Cavity QED materials: Comparison and validation of two linear response theories at arbitrary light-matter coupling strengths
- URL: http://arxiv.org/abs/2406.11971v2
- Date: Wed, 19 Jun 2024 08:54:50 GMT
- Title: Cavity QED materials: Comparison and validation of two linear response theories at arbitrary light-matter coupling strengths
- Authors: Juan Román-Roche, Álvaro Gómez-León, Fernando Luis, David Zueco,
- Abstract summary: We develop a linear response theory for materials collectively coupled to a cavity that is valid in all regimes of light-matter coupling.
We compare two different approaches to obtain thermal Green functions.
We provide a detailed application of the theory to the Quantum Hall effect and to a collection of magnetic models.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a linear response theory for materials collectively coupled to a cavity that is valid in all regimes of light-matter coupling, including symmetry-broken phases. We present and compare two different approaches. First, using a coherent path integral formulation for the partition function to obtain thermal Green functions. This approach relies on a saddle point expansion for the action, that can be truncated in the thermodynamic limit. Second, by formulating the equations of motion for the retarded Green functions and solving them. We use a mean-field decoupling of high-order Green functions in order to obtain a closed, solvable system of equations. Both approaches yield identical results in the calculation of response functions for the cavity and material. These are obtained in terms of the bare cavity and material responses. In combination, the two techniques clarify the validity of a mean-field decoupling in correlated light-matter systems and provide complementary means to compute finite-size corrections to the thermodynamic limit. The theory is formulated for a general model that encompasses most of the systems typically considered in the field of cavity QED materials, within a long-wavelength approximation. Finally, we provide a detailed application of the theory to the Quantum Hall effect and to a collection of magnetic models. We validate our predictions against analytical and finite-size exact-diagonalization results.
Related papers
- Quantum Transport Theory of Strongly Correlated Matter [0.0]
This report reviews recent progress in computing Kubo formulas for general interacting Hamiltonians.
The aim is to calculate electric and thermal magneto-conductivities in strong scattering regimes where Boltzmann equation and Hall conductivity proxies exceed their validity.
arXiv Detail & Related papers (2024-06-04T18:00:02Z) - A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material.
We propose a solution via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties.
arXiv Detail & Related papers (2024-05-28T15:42:15Z) - Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - An alternative derivation of orbital-free density functional theory [0.0]
Polymer self-consistent field theory techniques are used to derive quantum density functional theory.
The equations are shown to be equivalent to Kohn-Sham density functional theory.
arXiv Detail & Related papers (2022-11-20T22:16:08Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Optimal Manipulation Of Correlations And Temperature In Quantum
Thermodynamics [0.0]
This thesis is devoted to studying two tasks: refrigeration and the creation of correlations.
In the refrigeration part, two different paradigms of cooling, namely coherent and incoherent, are defined.
The creation of correlations part is devoted to the quantitative study of how much correlations can be created for a given amount of energy.
arXiv Detail & Related papers (2020-12-08T09:50:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.