論文の概要: QC-Forest: a Classical-Quantum Algorithm to Provably Speedup Retraining of Random Forest
- arxiv url: http://arxiv.org/abs/2406.12008v3
- Date: Thu, 11 Jul 2024 13:32:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:18:16.258345
- Title: QC-Forest: a Classical-Quantum Algorithm to Provably Speedup Retraining of Random Forest
- Title(参考訳): QC-Forest: ランダムフォレストの再トレーニングを高速化する古典的量子アルゴリズム
- Authors: Romina Yalovetzky, Niraj Kumar, Changhao Li, Marco Pistoia,
- Abstract要約: ランダムフォレスト(Random Forest, RF)は、教師あり学習法として人気があり、使いやすさと柔軟性で評価されている。
オンラインRFモデルは、モデルの精度を維持するために、新しいトレーニングデータを考慮する必要がある。
ストリーミング環境でのRFモデルの時間効率向上を目的とした古典量子アルゴリズムQC-Forestを提案する。
- 参考スコア(独自算出の注目度): 2.6436521007616114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random Forest (RF) is a popular tree-ensemble method for supervised learning, prized for its ease of use and flexibility. Online RF models require to account for new training data to maintain model accuracy. This is particularly important in applications where data is periodically and sequentially generated over time in data streams, such as auto-driving systems, and credit card payments. In this setting, performing periodic model retraining with the old and new data accumulated is beneficial as it fully captures possible drifts in the data distribution over time. However, this is unpractical with state-of-the-art classical algorithms for RF as they scale linearly with the accumulated number of samples. We propose QC-Forest, a classical-quantum algorithm designed to time-efficiently retrain RF models in the streaming setting for multi-class classification and regression, achieving a runtime poly-logarithmic in the total number of accumulated samples. QC-Forest leverages Des-q, a quantum algorithm for single tree construction and retraining proposed by Kumar et al. by expanding to multi-class classification, as the original proposal was limited to binary classes, and introducing an exact classical method to replace an underlying quantum subroutine incurring a finite error, while maintaining the same poly-logarithmic dependence. Finally, we showcase that QC-Forest achieves competitive accuracy in comparison to state-of-the-art RF methods on widely used benchmark datasets with up to 80,000 samples, while significantly speeding up the model retrain.
- Abstract(参考訳): ランダムフォレスト(Random Forest, RF)は、教師あり学習法として人気があり、使いやすさと柔軟性で評価されている。
オンラインRFモデルは、モデルの精度を維持するために、新しいトレーニングデータを考慮する必要がある。
これは、自動運転システムやクレジットカード支払いなどのデータストリームにおいて、データが定期的に、定期的に、時系列に生成されるアプリケーションにおいて特に重要である。
この設定では、時間とともにデータ分布のドリフトが完全に捕捉されるので、古いデータと新しいデータが蓄積された周期的モデルの再トレーニングを行うのが有益である。
しかし、これは、蓄積されたサンプル数と線形にスケールするため、RFの最先端の古典的アルゴリズムでは実用的ではない。
QC-Forestは,マルチクラス分類と回帰のためのストリーミング設定において,RFモデルを時間効率よく再学習するように設計された古典量子アルゴリズムである。
QC-Forestは、Kumarらによって提案された単一木構築と再訓練のための量子アルゴリズムであるDes-qを活用し、元の提案はバイナリクラスに限定されていたため、マルチクラス分類に拡張し、同じ多対数依存を維持しながら、基礎となる量子サブルーチンを有限エラーに置き換える正確な古典的な方法を導入した。
最後に、QC-Forestは、最大80,000のサンプルを持つ広く使用されているベンチマークデータセットの最先端RF手法と比較して、競合精度を向上し、モデル再トレーニングを大幅に高速化することを示した。
関連論文リスト
- Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation
for Time Series [49.992908221544624]
時系列データは、しばしば多くの欠落した値を示し、これは時系列計算タスクである。
従来の深層学習法は時系列計算に有効であることが示されている。
本研究では,不確実性のある高精度な計算を行う非生成時系列計算法を提案する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Des-q: a quantum algorithm to provably speedup retraining of decision trees [2.7262923206583136]
Des-qは、回帰および二分分類タスクのための決定木を構築し、再訓練するための新しい量子アルゴリズムである。
我々は,複数のデータセット上での最先端の古典的手法に対して,Des-qのシミュレーションバージョンをベンチマークする。
提案アルゴリズムは,最新の決定木に類似した性能を示しながら,周期木再学習を著しく高速化する。
論文 参考訳(メタデータ) (2023-09-18T17:56:08Z) - BCQQ: Batch-Constraint Quantum Q-Learning with Cyclic Data Re-uploading [2.502222151305252]
量子コンピューティングの最近の進歩は、量子モデルは古典的手法に比べて訓練に必要なデータが少ないことを示唆している。
離散バッチ制約深部Q-ラーニングアルゴリズムにおいて,VQCを関数近似器として利用するバッチRLアルゴリズムを提案する。
我々は,OpenAI CartPole環境におけるアルゴリズムの有効性を評価し,その性能を従来のニューラルネットワークに基づく離散BCQと比較した。
論文 参考訳(メタデータ) (2023-04-27T16:43:01Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Effective and Efficient Training for Sequential Recommendation using
Recency Sampling [91.02268704681124]
本稿では,新しいRecency-based Smpling of Sequencesトレーニング目標を提案する。
提案手法により拡張されたモデルにより,最先端のBERT4Recに近い性能が得られることを示す。
論文 参考訳(メタデータ) (2022-07-06T13:06:31Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
本稿では,アンサンブル共形量子化回帰(EnCQR)と呼ばれる新しい確率予測手法を提案する。
EnCQRは、分布のないほぼ妥当な予測間隔(PI)を構築し、非定常およびヘテロセダスティック時系列データに適しており、任意の予測モデルの上に適用することができる。
その結果、EnCQRは量子レグレッションやコンフォメーション予測のみに基づくモデルよりも優れており、よりシャープで、より情報的で、有効なPIを提供することが示された。
論文 参考訳(メタデータ) (2022-02-17T16:54:20Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
風車農場で生成されたデータの量は、オンライン学習が従うべき最も有効な戦略となっている。
我々はLong Short-term Cognitive Networks (LSTCNs) を用いて、オンライン環境での風車時系列を予測する。
提案手法は,単純なRNN,長期記憶,Gated Recurrent Unit,Hidden Markov Modelに対して最も低い予測誤差を報告した。
論文 参考訳(メタデータ) (2021-07-01T13:13:24Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
本稿では、ニューラルネットワークトレーニングのための自然勾配およびヘッセンフリー(NGHF)最適化フレームワークを提案する。
これは、自然勾配(ng)法とヘッセンフリー(hf)や他の二次法からの局所曲率情報を組み合わせた線形共役勾配(cg)アルゴリズムに依存している。
さまざまな音響モデルタイプのマルチジャンル放送データセットで実験が報告されています。
論文 参考訳(メタデータ) (2021-03-12T22:18:34Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
線形鎖条件ランダム場(CRF)モデルは最も広く使われているニューラルネットワークラベリング手法の1つである。
厳密な確率的推論アルゴリズムは典型的にはCRFモデルの訓練と予測段階に適用される。
CRFモデルに対して並列化可能な近似変分推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T12:18:43Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
我々は,現在のアプローチにおけるギャップに対処する新しい時系列分類アルゴリズムを提案する。
提案手法は,時系列の記号表現,効率的なシーケンスマイニングアルゴリズム,線形分類モデルに基づく。
我々のモデルは深層学習モデルと同じくらい正確だが、実行時間やメモリに関してより効率的であり、可変長の時系列を扱うことができ、元の時系列における識別的象徴的特徴を強調することで解釈できる。
論文 参考訳(メタデータ) (2020-05-31T15:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。