論文の概要: Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
- arxiv url: http://arxiv.org/abs/2406.12034v2
- Date: Mon, 07 Oct 2024 14:27:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:42:39.856934
- Title: Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
- Title(参考訳): Self-MoE: 自己専門のエキスパートによる構成的大規模言語モデルを目指して
- Authors: Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David Cox, Rameswar Panda, Rogerio Feris, Alan Ritter,
- Abstract要約: 本稿では,モノリシックLLMを,自己専門化の専門家による構成的,モジュール的なシステムに変換するアプローチであるSelf-MoEを紹介する。
提案手法は, 自己生成合成データを用いて, 専門家モジュールを構成する自己特殊化を利用する。
本研究は, モジュール性の重要性, マルチベースLCMへの適用性, 効率的でスケーラブルで適応可能なシステムの実現における自己改善の可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 49.950419707905944
- License:
- Abstract: We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts, named MiXSE (MiXture of Self-specialized Experts). Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data, each equipping a shared base LLM with distinct domain-specific capabilities, activated via self-optimized routing. This allows for dynamic and capability-specific handling of various target tasks, enhancing overall capabilities, without extensive human-labeled data and added parameters. Our empirical results reveal that specializing LLMs may exhibit potential trade-offs in performances on non-specialized tasks. On the other hand, our Self-MoE demonstrates substantial improvements (6.5%p on average) over the base LLM across diverse benchmarks such as knowledge, reasoning, math, and coding. It also consistently outperforms other methods, including instance merging and weight merging, while offering better flexibility and interpretability by design with semantic experts and routing. Our findings highlight the critical role of modularity, the applicability of Self-MoE to multiple base LLMs, and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
- Abstract(参考訳): 我々は,モノリシックなLCMを,MiXSE(MiXture of Self-specialized Experts)という,自己専門の専門家による構成的,モジュール的なシステムに変換するアプローチであるSelf-MoEを提案する。
提案手法は, 自己生成合成データを用いて専門家モジュールを構成する自己特殊化を利用して, それぞれが自己最適化ルーティングによって活性化される, 異なるドメイン固有の機能を持つ共有ベースLLMを装備する。
これにより、さまざまな目標タスクの動的かつ機能固有の処理が可能になり、広範な人間ラベル付きデータやパラメータを追加することなく、全体的な機能を向上させることができる。
実験結果から, LLMの特殊化は, 非特殊化タスクにおける性能に潜在的なトレードオフをもたらす可能性が示唆された。
一方、私たちのSelf-MoEは、知識、推論、数学、コーディングといった様々なベンチマークにおいて、ベースLSMよりも大幅に改善(平均6.5%)されていることを示しています。
また、インスタンスのマージや重み付けなど、他の方法よりも一貫して優れており、セマンティックエキスパートやルーティングの設計による柔軟性と解釈性も向上している。
本研究は, モジュール性の重要性, マルチベースLCMへの適用性, 効率的でスケーラブルで適応可能なシステムの実現における自己改善の可能性を明らかにするものである。
関連論文リスト
- ELF-Gym: Evaluating Large Language Models Generated Features for Tabular Prediction [33.03433653251314]
大規模言語モデル(LLM)を評価するためのフレームワークであるELF-Gymを提案する。
私たちは、トップパフォーマンスチームによって使用される251の"ゴールド"機能を含む、歴史的なKaggleコンペティションから、新たなデータセットをキュレートしました。
ベストケースのシナリオでは、LLMがゴールデン機能の約56%を意味的にキャプチャできるが、より要求の高い実装レベルでは、オーバーラップは13%に減少する。
論文 参考訳(メタデータ) (2024-10-13T13:59:33Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
本研究では,FEMモジュールと事前学習LLMを統合する新しい手法を提案する。
FEMモジュールはそれぞれの設計を評価し、重要なフィードバックを提供し、LLMにドメイン固有のトレーニングを必要とせずに継続的に学習し、計画し、生成し、設計を最適化するよう指示する。
その結果, LLMをベースとしたエージェントは, 自然言語仕様に準拠したトラスを最大90%の確率で生成できることがわかった。
論文 参考訳(メタデータ) (2024-04-26T16:41:24Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
SELF(Self-Evolution with Language Feedback)は、大規模言語モデルを進化させる新しいアプローチである。
LLMは、人間の学習プロセスと同様、自己回帰を通じて自己改善を可能にする。
数学および一般タスクにおける実験により,SELFは人間の介入なしにLLMの能力を高めることができることが示された。
論文 参考訳(メタデータ) (2023-10-01T00:52:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。