論文の概要: Satyrn: A Platform for Analytics Augmented Generation
- arxiv url: http://arxiv.org/abs/2406.12069v1
- Date: Mon, 17 Jun 2024 20:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 23:57:19.996586
- Title: Satyrn: A Platform for Analytics Augmented Generation
- Title(参考訳): Satyrn: 分析強化世代のためのプラットフォーム
- Authors: Marko Sterbentz, Cameron Barrie, Shubham Shahi, Abhratanu Dutta, Donna Hooshmand, Harper Pack, Kristian J. Hammond,
- Abstract要約: 本稿では、構造化データの解析を用いて、検索された文書がRAGで使用されるのとほとんど同じように、生成をガイドするために使用される事実集合を生成するアプローチを提案する。
我々は、AAGを利用して大規模データベース上に構築された正確で流動的でコヒーレントなレポートを生成する、ニューロシンボリックなプラットフォームであるSatyrnを提案する。
- 参考スコア(独自算出の注目度): 0.40151799356083057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are capable of producing documents, and retrieval augmented generation (RAG) has shown itself to be a powerful method for improving accuracy without sacrificing fluency. However, not all information can be retrieved from text. We propose an approach that uses the analysis of structured data to generate fact sets that are used to guide generation in much the same way that retrieved documents are used in RAG. This analytics augmented generation (AAG) approach supports the ability to utilize standard analytic techniques to generate facts that are then converted to text and passed to an LLM. We present a neurosymbolic platform, Satyrn that leverages AAG to produce accurate, fluent, and coherent reports grounded in large scale databases. In our experiments, we find that Satyrn generates reports in which over 86% accurate claims while maintaining high levels of fluency and coherence, even when using smaller language models such as Mistral-7B, as compared to GPT-4 Code Interpreter in which just 57% of claims are accurate.
- Abstract(参考訳): 大規模言語モデル(LLM)は文書を作成でき、検索拡張生成(RAG)は、流速を犠牲にすることなく精度を向上する強力な方法であることが示されている。
しかし、すべての情報をテキストから取り出すことはできない。
本稿では、構造化データの解析を用いて、検索された文書がRAGで使用されるのとほとんど同じように、生成をガイドするために使用される事実集合を生成するアプローチを提案する。
この分析拡張生成(AAG)アプローチは、標準的な分析技術を使用して、テキストに変換してLLMに渡される事実を生成する能力をサポートする。
我々は、AAGを利用して大規模データベース上に構築された正確で流動的でコヒーレントなレポートを生成する、ニューロシンボリックなプラットフォームであるSatyrnを提案する。
実験の結果,約57%のクレームが正確である GPT-4 Code Interpreter と比較して,Mistral-7B のようなより小さな言語モデルを用いても,高いフラレンシとコヒーレンスを維持しつつ,精度の高いクレームを 86% 以上生成していることがわかった。
関連論文リスト
- G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAGはグラフデータベースを統合して、検索プロセスを強化する。
文書のより詳細な表現を実現するために,エージェントベースの解析手法を実装した。
論文 参考訳(メタデータ) (2024-11-21T21:22:58Z) - FastRAG: Retrieval Augmented Generation for Semi-structured Data [1.5566524830295307]
本稿では,半構造化データを対象とした新しいRAG手法であるFastRAGを紹介する。
FastRAGはスキーマ学習とスクリプト学習を使用して、全データソースをLLMに送信することなく、データを抽出し、構造化する。
テキスト検索と知識グラフクエリを統合して、コンテキスト豊富な情報を取得する精度を向上させる。
論文 参考訳(メタデータ) (2024-11-21T01:00:25Z) - LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models [4.1180254968265055]
LLM-Refは、研究者が複数のソース文書から記事を書くのを補助する記述支援ツールである。
チャンキングとインデックスを使用する従来のRAGシステムとは異なり、私たちのツールはテキスト段落から直接コンテンツを検索し、生成します。
我々の手法は、RAGシステムの正確で関連性があり、文脈的に適切な応答を生成する能力の全体像を提供する総合的な指標である、Ragasスコアの3.25タイムから6.26タイムの上昇を達成する。
論文 参考訳(メタデータ) (2024-11-01T01:11:58Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
大規模言語モデル(LLM)は様々な言語タスクに優れるが、しばしば誤った情報を生成する。
Retrieval-Augmented Generation (RAG) は、正確な応答に文書検索を使用することによってこれを緩和することを目的としている。
論文 参考訳(メタデータ) (2024-07-17T05:50:32Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Grounded Keys-to-Text Generation: Towards Factual Open-Ended Generation [92.1582872870226]
そこで我々は,新しい接地型キー・ツー・テキスト生成タスクを提案する。
タスクは、ガイドキーと接地パスのセットが与えられたエンティティに関する事実記述を生成することである。
近年のQAに基づく評価手法に着想を得て,生成した記述の事実的正当性を示す自動計量MAFEを提案する。
論文 参考訳(メタデータ) (2022-12-04T23:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。