Discussion Graph Semantics of First-Order Logic with Equality for Reasoning about Discussion and Argumentation
- URL: http://arxiv.org/abs/2406.12163v1
- Date: Tue, 18 Jun 2024 00:32:00 GMT
- Title: Discussion Graph Semantics of First-Order Logic with Equality for Reasoning about Discussion and Argumentation
- Authors: Ryuta Arisaka,
- Abstract summary: We formulate discussion graph semantics of first-order logic with equality for reasoning about discussion and argumentation.
We achieve the generality through a top-down formulation of the semantics of first-order logic (with equality) formulas.
- Score: 0.9790236766474198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate discussion graph semantics of first-order logic with equality for reasoning about discussion and argumentation as naturally as we would reason about sentences. While there are a few existing proposals to use a formal logic for reasoning about argumentation, they are constructed bottom-up and specialised to the argumentation model by Dung. There is indeed a conspicuous lack of a formal reasoning framework for handling general discussion and argumentation models. We achieve the generality through a top-down formulation of the semantics of first-order logic (with equality) formulas, addressing the current shortage.
Related papers
- Dialogue-based Explanations for Logical Reasoning using Structured Argumentation [0.06138671548064355]
We identify structural weaknesses of the state-of-the-art and propose a generic argumentation-based approach to address these problems.
Our work provides dialogue models as dialectic-proof procedures to compute and explain a query answer.
This allows us to construct dialectical proof trees as explanations, which are more expressive and arguably more intuitive than existing explanation formalisms.
arXiv Detail & Related papers (2025-02-16T22:26:18Z) - Aristotle: Mastering Logical Reasoning with A Logic-Complete Decompose-Search-Resolve Framework [93.59256448185954]
We propose a logic-complete reasoning framework, Aristotle, with three key components: Logical Decomposer, Logical Search Router, and Logical Resolver.
In our framework, symbolic expressions and logical rules are comprehensively integrated into the entire reasoning process.
The experimental results on several datasets demonstrate that Aristotle consistently outperforms state-of-the-art reasoning frameworks in both accuracy and efficiency.
arXiv Detail & Related papers (2024-12-22T10:14:09Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Stable Normative Explanations: From Argumentation to Deontic Logic [1.3272510644778104]
This paper examines how a notion of stable explanation can be expressed in the context of formal argumentation.
We show how to build from argumentation neighborhood structures for deontic logic where this notion of explanation can be characterised.
arXiv Detail & Related papers (2023-07-11T10:26:05Z) - Argumentative Characterizations of (Extended) Disjunctive Logic Programs [2.055949720959582]
We show that assumption-based argumentation can represent not only normal logic programs, but also disjunctive logic programs and their extensions.
We consider some inference rules for disjunction that the core logic of the argumentation frameworks should respect.
arXiv Detail & Related papers (2023-06-12T14:01:38Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning.
The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
arXiv Detail & Related papers (2022-12-14T22:10:46Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
We propose to understand logical symbols and expressions in the text to arrive at the answer.
Based on such logical information, we put forward a context extension framework and a data augmentation algorithm.
Our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy.
arXiv Detail & Related papers (2021-05-08T10:09:36Z) - Higher-order Logic as Lingua Franca -- Integrating Argumentative
Discourse and Deep Logical Analysis [0.0]
We present an approach towards the deep, pluralistic logical analysis of argumentative discourse.
We use state-of-the-art automated reasoning technology for classical higher-order logic.
arXiv Detail & Related papers (2020-07-02T11:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.