A Semantic Tableau Method for Argument Construction
- URL: http://arxiv.org/abs/2209.04759v1
- Date: Sat, 10 Sep 2022 23:40:22 GMT
- Title: A Semantic Tableau Method for Argument Construction
- Authors: Nico Roos
- Abstract summary: A semantic tableau method, called an argumentation tableau, that enables the derivation of arguments is proposed.
An extension that enables reasoning with defeasible rules is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A semantic tableau method, called an argumentation tableau, that enables the
derivation of arguments, is proposed. First, the derivation of arguments for
standard propositional and predicate logic is addressed. Next, an extension
that enables reasoning with defeasible rules is presented. Finally, reasoning
by cases using an argumentation tableau is discussed.
Related papers
- H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Discussion Graph Semantics of First-Order Logic with Equality for Reasoning about Discussion and Argumentation [0.9790236766474198]
We formulate discussion graph semantics of first-order logic with equality for reasoning about discussion and argumentation.
We achieve the generality through a top-down formulation of the semantics of first-order logic (with equality) formulas.
arXiv Detail & Related papers (2024-06-18T00:32:00Z) - Learning Visual-Semantic Subspace Representations for Propositional Reasoning [49.17165360280794]
We propose a novel approach for learning visual representations that conform to a specified semantic structure.
Our approach is based on a new nuclear norm-based loss.
We show that its minimum encodes the spectral geometry of the semantics in a subspace lattice.
arXiv Detail & Related papers (2024-05-25T12:51:38Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
Language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks.
We conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement.
We reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
arXiv Detail & Related papers (2023-10-12T17:51:10Z) - Ranking-based Argumentation Semantics Applied to Logical Argumentation
(full version) [2.9005223064604078]
We investigate the behaviour of ranking-based semantics for structured argumentation.
We show that a wide class of ranking-based semantics gives rise to so-called culpability measures.
arXiv Detail & Related papers (2023-07-31T15:44:33Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning.
The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
arXiv Detail & Related papers (2022-12-14T22:10:46Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Intrinsic Argument Strength in Structured Argumentation: a Principled
Approach [0.0]
We study methods for assigning an argument its intrinsic strength, based on the strengths of the premises and inference rules used to form said argument.
We first define a set of principles, which are properties that strength assigning methods might satisfy.
We then propose two such methods and analyse which principles they satisfy.
arXiv Detail & Related papers (2021-09-01T11:54:15Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z) - Technical Report of "Deductive Joint Support for Rational Unrestricted
Rebuttal" [1.3706331473063877]
In ASPIC-style structured argumentation an argument can rebut another argument by attacking its conclusion.
In restricted rebuttal, the attacked conclusion must have been arrived at with a defeasible rule.
In unrestricted rebuttal, it may have been arrived at with a strict rule, as long as at least one of the antecedents of this strict rule was already defeasible.
arXiv Detail & Related papers (2020-05-07T17:19:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.