論文の概要: ToxiCloakCN: Evaluating Robustness of Offensive Language Detection in Chinese with Cloaking Perturbations
- arxiv url: http://arxiv.org/abs/2406.12223v1
- Date: Tue, 18 Jun 2024 02:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 22:58:48.345861
- Title: ToxiCloakCN: Evaluating Robustness of Offensive Language Detection in Chinese with Cloaking Perturbations
- Title(参考訳): ToxiCloakCN: 閉鎖摂動を伴う中国語における攻撃的言語検出のロバスト性の評価
- Authors: Yunze Xiao, Yujia Hu, Kenny Tsu Wei Choo, Roy Ka-wei Lee,
- Abstract要約: 本研究では,現在最先端の大規模言語モデル (LLM) の体系的摂動データにおける攻撃的内容の同定における限界について検討する。
我々の研究は、検出メカニズムを回避するために使用される進化的戦術に対抗するために、攻撃言語検出におけるより高度な技術が緊急に必要であることを強調している。
- 参考スコア(独自算出の注目度): 6.360597788845826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting hate speech and offensive language is essential for maintaining a safe and respectful digital environment. This study examines the limitations of state-of-the-art large language models (LLMs) in identifying offensive content within systematically perturbed data, with a focus on Chinese, a language particularly susceptible to such perturbations. We introduce \textsf{ToxiCloakCN}, an enhanced dataset derived from ToxiCN, augmented with homophonic substitutions and emoji transformations, to test the robustness of LLMs against these cloaking perturbations. Our findings reveal that existing models significantly underperform in detecting offensive content when these perturbations are applied. We provide an in-depth analysis of how different types of offensive content are affected by these perturbations and explore the alignment between human and model explanations of offensiveness. Our work highlights the urgent need for more advanced techniques in offensive language detection to combat the evolving tactics used to evade detection mechanisms.
- Abstract(参考訳): ヘイトスピーチと攻撃的言語の検出は、安全で尊敬すべきデジタル環境を維持するために不可欠である。
本研究では,現在最先端の大規模言語モデル (LLM) の体系的摂動データにおける攻撃的内容の同定における限界について検討し,特にそのような摂動の影響を受けやすい言語である中国語に着目した。
ToxiCN から派生した拡張データセットである \textsf{ToxiCloakCN} をホモフォニック置換や絵文字変換で拡張し,これらの閉鎖摂動に対する LLM の堅牢性を検証する。
以上の結果から,これらの摂動を応用した場合,既存のモデルでは攻撃内容の検出が著しく不十分であることが判明した。
本研究では、これらの摂動によって異なるタイプの攻撃コンテンツがどのように影響を受けるのかを詳細に分析し、人間の攻撃性の説明とモデルによる攻撃性の説明の整合性を探究する。
我々の研究は、検出メカニズムを回避するために使用される進化的戦術に対抗するために、攻撃言語検出におけるより高度な技術が緊急に必要であることを強調している。
関連論文リスト
- On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation [71.72465617754553]
対象中心の3次元空間関係を伝達する低レベルな文を生成し,これらを追加言語として組み込んで,深度推定における下流の影響を評価する。
我々の重要な発見は、現在の言語誘導深度推定器がシーンレベルの記述のみを最適に実行することである。
追加データを活用するにもかかわらず、これらの手法は敵の直接攻撃や分散シフトの増加に伴う性能低下に対して堅牢ではない。
論文 参考訳(メタデータ) (2024-04-12T15:35:20Z) - From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models [10.807067327137855]
言語モデルが多言語機能を取り入れているため、私たちの安全対策はペースを保ちます。
言語間で十分なアノテートされたデータセットがないため、私たちは翻訳データを用いて緩和手法を評価し、強化する。
これにより,翻訳品質と言語間移動が毒性軽減に及ぼす影響を検討することができる。
論文 参考訳(メタデータ) (2024-03-06T17:51:43Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Muted: Multilingual Targeted Offensive Speech Identification and
Visualization [15.656203119337436]
Muted は多言語 HAP の内容を特定するシステムであり,その強度を示すために熱マップを用いて攻撃的引数とそのターゲットを表示する。
本稿では,攻撃的スパンとその対象を既存のデータセットで識別する上でのモデルの性能と,ドイツ語のテキストに新たなアノテーションを提示する。
論文 参考訳(メタデータ) (2023-12-18T16:50:27Z) - Vicinal Risk Minimization for Few-Shot Cross-lingual Transfer in Abusive
Language Detection [19.399281609371258]
高リソースから中低リソース言語への言語間変換学習は、励みのよい結果を示している。
我々は、言語間乱用言語検出を改善するために、ドメイン適応のためのデータ拡張と継続事前学習を利用する。
論文 参考訳(メタデータ) (2023-11-03T16:51:07Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Improving negation detection with negation-focused pre-training [58.32362243122714]
否定は共通の言語的特徴であり、多くの言語理解タスクにおいて不可欠である。
最近の研究で、最先端のNLPモデルは否定を含むサンプルで性能が低いことが示されている。
本稿では,データ拡張と否定マスキングを対象とする,否定に焦点をあてた新たな事前学習戦略を提案する。
論文 参考訳(メタデータ) (2022-05-09T02:41:11Z) - Rethinking Offensive Text Detection as a Multi-Hop Reasoning Problem [15.476899850339395]
対話における暗黙的な攻撃的テキスト検出の課題について紹介する。
我々は、このより広い種類の攻撃的発話を理解するためには、推論が不可欠であると主張する。
このタスクの研究を支援するデータセットであるSLIGHTをリリースする。
論文 参考訳(メタデータ) (2022-04-22T06:20:15Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - On Long-Tailed Phenomena in Neural Machine Translation [50.65273145888896]
最先端のニューラルネットワーク翻訳(NMT)モデルは、低周波トークンの生成に苦労する。
条件付きテキスト生成における構造的依存関係にモデルトレーニングを適応させるために,新たな損失関数である反焦点損失を提案する。
提案手法は,複数の機械翻訳(MT)データセットに対して有効であり,クロスエントロピーよりも顕著に向上することを示す。
論文 参考訳(メタデータ) (2020-10-10T07:00:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。