More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
- URL: http://arxiv.org/abs/2406.12241v1
- Date: Tue, 18 Jun 2024 03:32:10 GMT
- Title: More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
- Authors: Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A. Rupam Mahmood, Doina Precup, Pan Xu,
- Abstract summary: We propose an algorithmic framework that incorporates different approximate sampling methods with the recently proposed Feel-Good Thompson Sampling (FGTS) approach.
Our regret analysis yields the best known dependency of regret on dimensionality, surpassing existing randomized algorithms.
Our algorithms achieve performance that is either better than or on par with other strong baselines from the deep RL literature.
- Score: 41.21199687865359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thompson sampling (TS) is one of the most popular exploration techniques in reinforcement learning (RL). However, most TS algorithms with theoretical guarantees are difficult to implement and not generalizable to Deep RL. While the emerging approximate sampling-based exploration schemes are promising, most existing algorithms are specific to linear Markov Decision Processes (MDP) with suboptimal regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In this work, we propose an algorithmic framework that incorporates different approximate sampling methods with the recently proposed Feel-Good Thompson Sampling (FGTS) approach (Zhang, 2022; Dann et al., 2021), which was previously known to be computationally intractable in general. When applied to linear MDPs, our regret analysis yields the best known dependency of regret on dimensionality, surpassing existing randomized algorithms. Additionally, we provide explicit sampling complexity for each employed sampler. Empirically, we show that in tasks where deep exploration is necessary, our proposed algorithms that combine FGTS and approximate sampling perform significantly better compared to other strong baselines. On several challenging games from the Atari 57 suite, our algorithms achieve performance that is either better than or on par with other strong baselines from the deep RL literature.
Related papers
- Making RL with Preference-based Feedback Efficient via Randomization [11.019088464664696]
Reinforcement Learning algorithms that learn from human feedback need to be efficient in terms of statistical complexity, computational complexity, and query complexity.
We present an algorithm that is sample efficient (i.e. has near-optimal-case regret bounds) and has running time (i.e. computational complexity is worst with respect to relevant parameters)
To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling.
arXiv Detail & Related papers (2023-10-23T04:19:35Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
arXiv Detail & Related papers (2023-05-29T17:11:28Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Thompson Sampling for Unimodal Bandits [21.514495320038712]
We propose a Thompson Sampling algorithm for emphunimodal bandits, where the expected reward is unimodal over the partially ordered arms.
For Gaussian rewards, the regret of our algorithm is $mathcalO(log T)$, which is far better than standard Thompson Sampling algorithms.
arXiv Detail & Related papers (2021-06-15T14:40:34Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - On Thompson Sampling with Langevin Algorithms [106.78254564840844]
Thompson sampling for multi-armed bandit problems enjoys favorable performance in both theory and practice.
It suffers from a significant limitation computationally, arising from the need for samples from posterior distributions at every iteration.
We propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling to address this issue.
arXiv Detail & Related papers (2020-02-23T22:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.