論文の概要: Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models
- arxiv url: http://arxiv.org/abs/2406.12326v1
- Date: Tue, 18 Jun 2024 06:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 20:25:52.426143
- Title: Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models
- Title(参考訳): 事前学習型コード生成モデルのコード理解能力の探索
- Authors: Jiayi Lin, Yutao Xie, Yue Yu, Yibiao Yang, Lei Zhang,
- Abstract要約: 私たちは、事前訓練されたコード生成モデルからコード理解タスクへの知識の移行の先駆者です。
CL4Dはデコーダのみのモデルの表現能力を向上させるために設計された,コントラスト学習手法である。
- 参考スコア(独自算出の注目度): 12.959392500354223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large code generation models trained in a self-supervised manner on extensive unlabeled programming language data have achieved remarkable success. While these models acquire vast amounts of code knowledge, they perform poorly on code understanding tasks, such as code search and clone detection, as they are specifically trained for generation. Pre-training a larger encoder-only architecture model from scratch on massive code data can improve understanding performance. However, this approach is costly and time-consuming, making it suboptimal. In this paper, we pioneer the transfer of knowledge from pre-trained code generation models to code understanding tasks, significantly reducing training costs. We examine effective strategies for enabling decoder-only models to acquire robust code representations. Furthermore, we introduce CL4D, a contrastive learning method designed to enhance the representation capabilities of decoder-only models. Comprehensive experiments demonstrate that our approach achieves state-of-the-art performance in understanding tasks such as code search and clone detection. Our analysis shows that our method effectively reduces the distance between semantically identical samples in the representation space. These findings suggest the potential for unifying code understanding and generation tasks using a decoder-only structured model.
- Abstract(参考訳): 近年,広範囲な未ラベルプログラミング言語データに基づいて,自己教師型で訓練された大規模コード生成モデルは,目覚ましい成功を収めている。
これらのモデルは膨大な量のコード知識を取得するが、コード検索やクローン検出などのコード理解タスクでは、生成のために特別に訓練されているため、パフォーマンスが良くない。
大規模なコードデータに対してスクラッチからより大きなエンコーダのみのアーキテクチャモデルを事前トレーニングすることで、パフォーマンスの理解が向上する。
しかし、このアプローチはコストがかかり、時間がかかります。
本稿では,事前学習したコード生成モデルからコード理解タスクへ知識を移行し,トレーニングコストを大幅に削減する。
本稿では,デコーダのみのモデルでロバストなコード表現を実現するための効果的な戦略について検討する。
さらに,デコーダのみのモデルの表現能力を向上するコントラスト学習手法であるCL4Dを導入する。
包括的実験により,コード検索やクローン検出といったタスクの理解において,我々の手法が最先端の性能を達成することを示す。
本手法は,表現空間における意味的に同一なサンプル間の距離を効果的に削減することを示す。
これらの結果から,デコーダのみの構造化モデルを用いて,コード理解と生成タスクを統一する可能性が示唆された。
関連論文リスト
- DeepCodeProbe: Towards Understanding What Models Trained on Code Learn [13.135962181354465]
本稿では,MLモデルの構文と表現学習能力を調べるための探索手法であるDeepCodeProbeを紹介する。
コードクローン検出,コード要約,コメント生成の最先端モデルにDeepCodeProbeを適用した。
発見によると、小さなモデルは抽象構文表現をキャプチャするが、プログラミング言語の構文を完全に把握する能力は限られている。
論文 参考訳(メタデータ) (2024-07-11T23:16:44Z) - Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
セルフ教師付き事前トレーニングは、多くのダウンストリームSEタスクに価値のあるジェネリックコード表現を学ぶための牽引役になった。
汎用的な表現学習のために、開発者が日々どのようにコードをコーディングするかは、要因としても不可欠である、と私たちは主張する。
特に,表現空間に良性クローンを近づける自己教師型コントラスト学習戦略であるCONCORDを提案する。
論文 参考訳(メタデータ) (2023-06-05T20:39:08Z) - TransCoder: Towards Unified Transferable Code Representation Learning Inspired by Human Skills [31.75121546422898]
本稿では,コード表現学習のためのTransCoderについて述べる。
我々は、メタラーナーとして調整可能なプレフィックスエンコーダを用いて、クロスタスクおよびクロス言語変換可能な知識をキャプチャする。
本手法は, 各種コード関連タスクの性能向上と相互強化の促進に寄与する。
論文 参考訳(メタデータ) (2023-05-23T06:59:22Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - Probing Pretrained Models of Source Code [14.904366372190943]
一般的な事前学習モデルは、多くのアプリケーションにおいてタスク固有のモデルよりも優れていることが示されている。
事前訓練されたコードのモデルには、コード構文構造と正当性、識別子の概念、データフローと正当性、自然言語の命名に関する情報が含まれている。
論文 参考訳(メタデータ) (2022-02-16T10:26:14Z) - Contrastive Learning for Source Code with Structural and Functional
Properties [66.10710134948478]
本稿では,ソースコードの特徴に基づいて事前学習に焦点を当てた,新たな自己教師型モデルBOOSTを提案する。
私たちは、機能的に等価なコードを生成する自動化された構造誘導型コード変換アルゴリズムを採用しています。
私たちは、対照的な学習目標を通じて、機能的に等価なコードをより近く、異なるコードに近づける方法で、モデルをトレーニングします。
論文 参考訳(メタデータ) (2021-10-08T02:56:43Z) - CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for
Code Understanding and Generation [36.47905744758698]
我々は、開発者が指定した識別子から伝達されるコードセマンティクスをよりよく活用する、事前訓練されたエンコーダ-デコーダ変換モデルであるCodeT5を提案する。
我々のモデルは、コード理解と生成タスクの両方をシームレスにサポートし、マルチタスク学習を可能にする統一的なフレームワークを採用している。
論文 参考訳(メタデータ) (2021-09-02T12:21:06Z) - InferCode: Self-Supervised Learning of Code Representations by
Predicting Subtrees [17.461451218469062]
本稿では,自己言語学習機構をソースコードモデルに適用することにより,制限を克服するinfercodeを提案する。
ASTのサブツリーは、人間のラベル付けや高価なグラフ構築のオーバーヘッドなしにコード表現をトレーニングするためのラベルとして、InferCodeで扱われる。
Code2Vec、Code2Seq、ASTNNなど、同じ下流タスクに適用される以前のコード学習技術と比較して、事前に訓練されたInferCodeモデルを使用して、より高いパフォーマンスを達成できます。
論文 参考訳(メタデータ) (2020-12-13T10:33:41Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
本稿では,コード固有の構造を考慮したプログラミング言語の事前学習モデルであるGraphCodeBERTを提案する。
これは変数間の"where-the-value-comes-from"の関係をエンコードするコードのセマンティックレベルの構造です。
コード検索,クローン検出,コード翻訳,コード改良の4つのタスクにおいて,本モデルを評価する。
論文 参考訳(メタデータ) (2020-09-17T15:25:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。