Security and Privacy of 6G Federated Learning-enabled Dynamic Spectrum Sharing
- URL: http://arxiv.org/abs/2406.12330v1
- Date: Tue, 18 Jun 2024 06:54:15 GMT
- Title: Security and Privacy of 6G Federated Learning-enabled Dynamic Spectrum Sharing
- Authors: Viet Vo, Thusitha Dayaratne, Blake Haydon, Xingliang Yuan, Shangqi Lai, Sharif Abuadbba, Hajime Suzuki, Carsten Rudolph,
- Abstract summary: Federated learning (FL)-enabled spectrum sensing technology has garnered wide attention.
This article first examines the latest developments in FL-enabled spectrum sharing for prospective 6G scenarios.
It then identifies practical attack vectors in 6G to illustrate potential AI-powered security and privacy threats.
- Score: 9.199924426745945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectrum sharing is increasingly vital in 6G wireless communication, facilitating dynamic access to unused spectrum holes. Recently, there has been a significant shift towards employing machine learning (ML) techniques for sensing spectrum holes. In this context, federated learning (FL)-enabled spectrum sensing technology has garnered wide attention, allowing for the construction of an aggregated ML model without disclosing the private spectrum sensing information of wireless user devices. However, the integrity of collaborative training and the privacy of spectrum information from local users have remained largely unexplored. This article first examines the latest developments in FL-enabled spectrum sharing for prospective 6G scenarios. It then identifies practical attack vectors in 6G to illustrate potential AI-powered security and privacy threats in these contexts. Finally, the study outlines future directions, including practical defense challenges and guidelines.
Related papers
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
arXiv Detail & Related papers (2025-08-02T14:40:50Z) - Self-Adaptive and Robust Federated Spectrum Sensing without Benign Majority for Cellular Networks [9.681746019018943]
This work addresses two key challenges in FL-based spectrum sensing (FLSS)<n>First, the scarcity of labeled data for training FL models in practical spectrum sensing scenarios is tackled with a semi-supervised FL approach.<n>Second, we examine the security vulnerabilities of FLSS, focusing on the impact of data poisoning attacks.
arXiv Detail & Related papers (2025-07-16T10:53:19Z) - LLM-Driven APT Detection for 6G Wireless Networks: A Systematic Review and Taxonomy [0.2999888908665658]
We present a comprehensive systematic review and taxonomy study for LLM-assisted APT detection in 6G networks.<n>We identify open challenges such as explainability gaps, data scarcity, edge hardware limitations, and the need for real-time slicing-aware adaptation.
arXiv Detail & Related papers (2025-05-24T19:42:11Z) - Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation [0.0]
Unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities.
We propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity.
We also develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model.
arXiv Detail & Related papers (2024-11-17T19:24:49Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - Distributed Learning Meets 6G: A Communication and Computing Perspective [24.631203542364908]
Federated Learning (FL) has emerged as the DL architecture of choice in prominent wireless applications.
As a practical use case, we apply Multi-Agent Reinforcement Learning (MARL) within the FL framework to the Dynamic Spectrum Access (DSA) problem.
Top contemporary challenges in applying DL approaches to 6G networks are also highlighted.
arXiv Detail & Related papers (2023-03-02T15:15:33Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - A Comprehensive Survey on Radio Frequency (RF) Fingerprinting:
Traditional Approaches, Deep Learning, and Open Challenges [1.5469452301122175]
5G networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications.
Massive scale of wireless devices exposes unprecedented threat surfaces.
RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures.
arXiv Detail & Related papers (2022-01-03T14:42:53Z) - Interference Suppression Using Deep Learning: Current Approaches and
Open Challenges [2.179313476241343]
In this paper, we review a wide range of techniques that have used deep learning to suppress interference.
We provide comparison and guidelines for many different types of deep learning techniques in interference suppression.
In addition, we highlight challenges and potential future research directions for the successful adoption of deep learning in interference suppression.
arXiv Detail & Related papers (2021-12-16T16:07:42Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
This article aims to provide a comprehensive survey on applications of Transfer Learning in wireless networks.
We first provide an overview of TL including formal definitions, classification, and various types of TL techniques.
We then discuss diverse TL approaches proposed to address emerging issues in wireless networks.
arXiv Detail & Related papers (2021-02-15T14:19:55Z) - Machine Learning Towards Enabling Spectrum-as-a-Service Dynamic Sharing [8.149212297123016]
This paper provides an overview of the different spectrum sharing levels and techniques that have been proposed in the literature.
It also discusses the potential of adopting dynamic sharing mechanisms by offering Spectrum-as-a-Service architecture.
arXiv Detail & Related papers (2020-09-04T15:41:02Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
We introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.
We describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
arXiv Detail & Related papers (2020-06-04T15:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.