Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach
- URL: http://arxiv.org/abs/2204.04837v1
- Date: Mon, 11 Apr 2022 02:46:22 GMT
- Title: Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach
- Authors: Sk. Tanzir Mehedi, Adnan Anwar, Ziaur Rahman, Kawsar Ahmed and Rafiqul
Islam
- Abstract summary: This manuscript proposes a deep transfer learning-based dependable IDS model that outperforms several existing approaches.
It includes effective attribute selection, which is best suited to identify normal and attack scenarios for a small amount of labeled data.
It also includes a dependable deep transfer learning-based ResNet model, and evaluating considering real-world data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Security concerns for IoT applications have been alarming because of their
widespread use in different enterprise systems. The potential threats to these
applications are constantly emerging and changing, and therefore, sophisticated
and dependable defense solutions are necessary against such threats. With the
rapid development of IoT networks and evolving threat types, the traditional
machine learning-based IDS must update to cope with the security requirements
of the current sustainable IoT environment. In recent years, deep learning, and
deep transfer learning have progressed and experienced great success in
different fields and have emerged as a potential solution for dependable
network intrusion detection. However, new and emerging challenges have arisen
related to the accuracy, efficiency, scalability, and dependability of the
traditional IDS in a heterogeneous IoT setup. This manuscript proposes a deep
transfer learning-based dependable IDS model that outperforms several existing
approaches. The unique contributions include effective attribute selection,
which is best suited to identify normal and attack scenarios for a small amount
of labeled data, designing a dependable deep transfer learning-based ResNet
model, and evaluating considering real-world data. To this end, a comprehensive
experimental performance evaluation has been conducted. Extensive analysis and
performance evaluation show that the proposed model is robust, more efficient,
and has demonstrated better performance, ensuring dependability.
Related papers
- A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
arXiv Detail & Related papers (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner.
This approach may violate data privacy and prohibit IDS scalability.
We design an experiment representative of the real world and evaluate the performance of an FL-based IDS.
arXiv Detail & Related papers (2023-06-05T09:08:24Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Deep Transfer Learning Based Intrusion Detection System for Electric
Vehicular Networks [0.0]
The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures.
Traditional machine learning-based IDS has to update to cope with the security requirements of the current environment.
This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models.
arXiv Detail & Related papers (2021-07-12T03:06:49Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.