Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey
- URL: http://arxiv.org/abs/2402.00920v1
- Date: Thu, 1 Feb 2024 14:33:24 GMT
- Title: Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey
- Authors: Jawad Hussain Kalwar, Sania Bhatti
- Abstract summary: The Internet of Things (IoT) has witnessed unprecedented growth, resulting in a massive influx of diverse network traffic from interconnected devices.
Effectively classifying this network traffic is crucial for optimizing resource allocation, enhancing security measures, and ensuring efficient network management in IoT systems.
Deep learning has emerged as a powerful technique for network traffic classification due to its ability to automatically learn complex patterns and representations from raw data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Internet of Things (IoT) has witnessed unprecedented growth, resulting in
a massive influx of diverse network traffic from interconnected devices.
Effectively classifying this network traffic is crucial for optimizing resource
allocation, enhancing security measures, and ensuring efficient network
management in IoT systems. Deep learning has emerged as a powerful technique
for network traffic classification due to its ability to automatically learn
complex patterns and representations from raw data. This survey paper aims to
provide a comprehensive overview of the existing deep learning approaches
employed in network traffic classification specifically tailored for IoT
environments. By systematically analyzing and categorizing the latest research
contributions in this domain, we explore the strengths and limitations of
various deep learning models in handling the unique challenges posed by IoT
network traffic. Through this survey, we aim to offer researchers and
practitioners valuable insights, identify research gaps, and provide directions
for future research to further enhance the effectiveness and efficiency of deep
learning-based network traffic classification in IoT.
Related papers
- A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system.
We introduce a novel data-driven approach that excels in identifying various network service types in real-time.
Our system demonstrates a remarkable accuracy in distinguishing the network services.
arXiv Detail & Related papers (2023-10-14T16:06:11Z) - Streaming Active Learning with Deep Neural Networks [44.50018541065145]
We propose VeSSAL, a new algorithm for batch active learning with deep neural networks in streaming settings.
VeSSAL samples groups of points to query for labels at the moment they are encountered.
We expand the applicability of deep neural networks to realistic active learning scenarios.
arXiv Detail & Related papers (2023-03-05T00:57:28Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
Federated Learning (FL) has recently become an effective approach for cyberattack detection systems.
FL can improve learning efficiency, reduce communication overheads and enhance privacy for cyberattack detection systems.
Challenges in implementation of FL in such systems include unavailability of labeled data and dissimilarity of data features in different IoT networks.
arXiv Detail & Related papers (2021-12-02T05:26:29Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks [1.0934800950965335]
We develop a nonautore graph-based neural network for multistep network traffic forecasting.
We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network.
arXiv Detail & Related papers (2020-08-28T17:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.