PDSS: A Privacy-Preserving Framework for Step-by-Step Distillation of Large Language Models
- URL: http://arxiv.org/abs/2406.12403v1
- Date: Tue, 18 Jun 2024 08:48:14 GMT
- Title: PDSS: A Privacy-Preserving Framework for Step-by-Step Distillation of Large Language Models
- Authors: Tao Fan, Yan Kang, Weijing Chen, Hanlin Gu, Yuanfeng Song, Lixin Fan, Kai Chen, Qiang Yang,
- Abstract summary: PDSS works on a server-client architecture, wherein client transmits prompts to the server's LLM for rationale generation.
The generated rationales are then decoded by the client and used to enrich the training of task-specific small language model.
Experiments demonstrate the effectiveness of PDSS in various text generation tasks, enabling the training of task-specific SLM with enhanced performance.
- Score: 29.58928014528991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of real-world applications, leveraging large language models (LLMs) for domain-specific tasks often faces two major challenges: domain-specific knowledge privacy and constrained resources. To address these issues, we propose PDSS, a privacy-preserving framework for step-by-step distillation of LLMs. PDSS works on a server-client architecture, wherein client transmits perturbed prompts to the server's LLM for rationale generation. The generated rationales are then decoded by the client and used to enrich the training of task-specific small language model(SLM) within a multi-task learning paradigm. PDSS introduces two privacy protection strategies: the Exponential Mechanism Strategy and the Encoder-Decoder Strategy, balancing prompt privacy and rationale usability. Experiments demonstrate the effectiveness of PDSS in various text generation tasks, enabling the training of task-specific SLM with enhanced performance while prioritizing data privacy protection.
Related papers
- A Practical and Privacy-Preserving Framework for Real-World Large Language Model Services [8.309281698695381]
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding and generation.
Individuals often rely on online AI as a Service (AI) provided by LLM companies.
This business model poses significant privacy risks, as service providers may exploit users' trace patterns and behavioral data.
We propose a practical and privacy-preserving framework that ensures user anonymity by preventing service providers from linking requests to the individuals who submit them.
arXiv Detail & Related papers (2024-11-03T07:40:28Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Large Language Models: A New Approach for Privacy Policy Analysis at Scale [1.7570777893613145]
This research proposes the application of Large Language Models (LLMs) as an alternative for effectively and efficiently extracting privacy practices from privacy policies at scale.
We leverage well-known LLMs such as ChatGPT and Llama 2, and offer guidance on the optimal design of prompts, parameters, and models.
Using several renowned datasets in the domain as a benchmark, our evaluation validates its exceptional performance, achieving an F1 score exceeding 93%.
arXiv Detail & Related papers (2024-05-31T15:12:33Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
We introduce a Federated Domain-specific Knowledge Transfer framework.
It enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy.
The proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5% with a privacy budget of less than 10.
arXiv Detail & Related papers (2024-05-23T06:14:35Z) - ConfusionPrompt: Practical Private Inference for Online Large Language Models [3.8134804426693094]
State-of-the-art large language models (LLMs) are typically deployed as online services, requiring users to transmit detailed prompts to cloud servers.
We introduce ConfusionPrompt, a novel framework for private LLM inference that protects user privacy by decomposing the original prompt into smaller sub-prompts.
We show that ConfusionPrompt achieves significantly higher utility than local inference methods using open-source models and perturbation-based techniques.
arXiv Detail & Related papers (2023-12-30T01:26:42Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.