論文の概要: Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models
- arxiv url: http://arxiv.org/abs/2406.12423v1
- Date: Tue, 18 Jun 2024 09:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:46:52.522574
- Title: Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models
- Title(参考訳): 深部テンポラルデアグリゲーション:大規模時空間生成モデル
- Authors: David Bergström, Mattias Tiger, Fredrik Heintz,
- Abstract要約: 本稿では,最新技術よりもパフォーマンスとスケールが大幅に向上する時系列の変圧器に基づく拡散モデルTDDPMを提案する。
これは、いくつかのシーケンス長、標準データセット、評価尺度にまたがる新しい包括的なベンチマークで評価される。
- 参考スコア(独自算出の注目度): 5.816964541847194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many of today's data is time-series data originating from various sources, such as sensors, transaction systems, or production systems. Major challenges with such data include privacy and business sensitivity. Generative time-series models have the potential to overcome these problems, allowing representative synthetic data, such as people's movement in cities, to be shared openly and be used to the benefit of society at large. However, contemporary approaches are limited to prohibitively short sequences and small scales. Aside from major memory limitations, the models generate less accurate and less representative samples the longer the sequences are. This issue is further exacerbated by the lack of a comprehensive and accessible benchmark. Furthermore, a common need in practical applications is what-if analysis and dynamic adaptation to data distribution changes, for usage in decision making and to manage a changing world: What if this road is temporarily blocked or another road is added? The focus of this paper is on mobility data, such as people's movement in cities, requiring all these issues to be addressed. To this end, we propose a transformer-based diffusion model, TDDPM, for time-series which outperforms and scales substantially better than state-of-the-art. This is evaluated in a new comprehensive benchmark across several sequence lengths, standard datasets, and evaluation measures. We also demonstrate how the model can be conditioned on a prior over spatial occupancy frequency information, allowing the model to generate mobility data for previously unseen environments and for hypothetical scenarios where the underlying road network and its usage changes. This is evaluated by training on mobility data from part of a city. Then, using only aggregate spatial information as prior, we demonstrate out-of-distribution generalization to the unobserved remainder of the city.
- Abstract(参考訳): 今日のデータの多くは、センサー、トランザクションシステム、プロダクションシステムなど、さまざまなソースから派生した時系列データである。
このようなデータの主な課題は、プライバシーとビジネスの感度だ。
世代別時系列モデルはこれらの問題を克服する可能性を秘めており、都市における人々の移動などの代表的な合成データをオープンに共有し、社会全体の利益に利用することができる。
しかし、現代のアプローチは禁断的に短い列と小さなスケールに限られている。
主要なメモリ制限を除いて、モデルは精度が低く、シーケンスが長くなるほど代表的なサンプルが少なくなる。
この問題は、包括的でアクセス可能なベンチマークの欠如によってさらに悪化している。
さらに、現実的な応用における一般的なニーズは、意思決定における使用と変化する世界を管理するために、データ分散の変化に対する分析と動的適応である。
本論文の焦点は、都市における人々の移動などのモビリティデータであり、これらの問題に対処する必要がある。
そこで本研究では,最先端技術よりもパフォーマンスとスケールが大幅に向上する時系列の変換器に基づく拡散モデルTDDPMを提案する。
これは、いくつかのシーケンス長、標準データセット、評価尺度にまたがる新しい包括的なベンチマークで評価される。
また、空間的占有頻度情報よりも先行してモデルをどのように条件付けするかを示し、従来見えていなかった環境や、基礎となる道路網とその利用状況が変化する仮説上のシナリオに対して、モデルがモビリティデータを生成できるようにする。
これは、都市の一部からモビリティデータのトレーニングによって評価される。
そして, 集合空間情報のみを先行として, 都市の未保存地域への分布の一般化を実証する。
関連論文リスト
- Evaluating the Generalization Ability of Spatiotemporal Model in Urban Scenario [11.208740750755025]
本研究では,自転車シェアリング,311サービス,歩行者交通速度,交通流,配車需要,自転車シェアリングの6つのシナリオからなる時空間アウト・オブ・ディストリビューション(ST-OOD)ベンチマークを提案する。
我々は、最先端モデルについて広範囲に評価し、その性能は分配外設定で著しく低下し、ほとんどのモデルが単純なマルチレイヤ・パーセプトロン(MLP)よりも性能が悪くなっていることを発見した。
その結果,ほとんどのデータセットにおいて若干のドロップアウト率で一般化性能が向上し,分配性能に最小限の影響が認められた。
論文 参考訳(メタデータ) (2024-10-07T04:15:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
実世界の応用性の観点から,5つの最先端合成手法の有用性を評価した。
我々は、GPS追跡タクシーのような細粒度都市の動きを符号化するいわゆる旅行データに焦点を当てる。
あるモデルは妥当な時間内にデータを生成することができず、別のモデルはマップマッチングの要件を満たすためにあまりに多くのジャンプを生成する。
論文 参考訳(メタデータ) (2024-07-03T16:08:05Z) - XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges [3.7509821052818118]
XXLTrafficは、最も長いタイムパンとセンサーノード数の増加で利用可能な公開トラフィックデータセットである。
我々のデータセットは、既存の時間的データ資源を補完し、この領域における新しい研究の方向性につながる。
論文 参考訳(メタデータ) (2024-06-18T15:06:22Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation [24.284969264008733]
本稿では,データの周期性を考慮してドリフトを符号化するコンセプトドリフト問題に対する新しい都市時系列予測モデルを提案する。
我々の設計は最先端の手法よりも優れており、既存の予測バックボーンに十分に一般化することができる。
論文 参考訳(メタデータ) (2023-09-25T15:22:28Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - Generating synthetic mobility data for a realistic population with RNNs
to improve utility and privacy [3.3918638314432936]
本稿では, ディープリカレントニューラルネットワーク(RNN)を用いた合成モビリティデータ生成システムを提案する。
本システムは, 個体群分布を入力として, 対応する合成個体群の移動トレースを生成する。
生成したモビリティデータは,個々のレベルでの実際のデータから変化しながら,実際のデータの特徴を保っていることを示す。
論文 参考訳(メタデータ) (2022-01-04T13:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。