RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes
- URL: http://arxiv.org/abs/2406.12465v1
- Date: Tue, 18 Jun 2024 10:16:18 GMT
- Title: RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes
- Authors: Xiaoshan Yu, Chuan Qin, Dazhong Shen, Shangshang Yang, Haiping Ma, Hengshu Zhu, Xingyi Zhang,
- Abstract summary: We propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels.
In this paper, we introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions.
We design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism.
- Score: 22.379764500005503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Related papers
- Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability.
We propose a methodology for predicting student performance from their online learning activities that optimize inference accuracy over different demographic groups such as race and gender.
arXiv Detail & Related papers (2022-08-02T00:22:20Z) - Ex-Model: Continual Learning from a Stream of Trained Models [12.27992745065497]
We argue that continual learning systems should exploit the availability of compressed information in the form of trained models.
We introduce and formalize a new paradigm named "Ex-Model Continual Learning" (ExML), where an agent learns from a sequence of previously trained models instead of raw data.
arXiv Detail & Related papers (2021-12-13T09:46:16Z) - Mixture-of-Variational-Experts for Continual Learning [0.0]
We propose an optimality principle that facilitates a trade-off between learning and forgetting.
We propose a neural network layer for continual learning, called Mixture-of-Variational-Experts (MoVE)
Our experiments on variants of the MNIST and CIFAR10 datasets demonstrate the competitive performance of MoVE layers.
arXiv Detail & Related papers (2021-10-25T06:32:06Z) - Relaxed Clustered Hawkes Process for Procrastination Modeling in MOOCs [1.6822770693792826]
We propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters.
Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters.
arXiv Detail & Related papers (2021-01-29T22:20:38Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
We propose a self-supervised solution to the problem of learning to model how the world changes as time elapses.
Our model learns modality-agnostic functions to predict forward and backward in time, which must undo each other when composed.
We apply the learned dynamics model without further training to various tasks, such as predicting future action and temporally ordering sets of images.
arXiv Detail & Related papers (2021-01-07T02:41:32Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Collaborative Group Learning [42.31194030839819]
Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima.
Previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises.
We propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization.
arXiv Detail & Related papers (2020-09-16T14:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.