論文の概要: Accelerating Depthwise Separable Convolutions on Ultra-Low-Power Devices
- arxiv url: http://arxiv.org/abs/2406.12478v1
- Date: Tue, 18 Jun 2024 10:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:27:22.527207
- Title: Accelerating Depthwise Separable Convolutions on Ultra-Low-Power Devices
- Title(参考訳): 超低消費電力デバイスにおける深部分離型コンボリューションの高速化
- Authors: Francesco Daghero, Alessio Burrello, Massimo Poncino, Enrico Macii, Daniele Jahier Pagliari,
- Abstract要約: 分離可能な畳み込みブロックを構成する深さと点の異なるカーネルを融合させる方法を模索する。
我々のアプローチは、異なるデータレイアウトを組み合わせることで、メモリ転送に要する時間を最小化することを目的としている。
- 参考スコア(独自算出の注目度): 10.733902200950872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depthwise separable convolutions are a fundamental component in efficient Deep Neural Networks, as they reduce the number of parameters and operations compared to traditional convolutions while maintaining comparable accuracy. However, their low data reuse opportunities make deploying them notoriously difficult. In this work, we perform an extensive exploration of alternatives to fuse the depthwise and pointwise kernels that constitute the separable convolutional block. Our approach aims to minimize time-consuming memory transfers by combining different data layouts. When targeting a commercial ultra-low-power device with a three-level memory hierarchy, the GreenWaves GAP8 SoC, we reduce the latency of end-to-end network execution by up to 11.40%. Furthermore, our kernels reduce activation data movements between L2 and L1 memories by up to 52.97%.
- Abstract(参考訳): 奥行き分離可能な畳み込みは、等価な精度を維持しながら、従来の畳み込みと比較してパラメータや操作の数を減らし、効率的なディープニューラルネットワークの基本的な構成要素である。
しかし、それらの低いデータ再利用の機会は、それらをデプロイすることを非常に困難にします。
本研究では,分離可能な畳み込みブロックを構成する深さと点の異なるカーネルを融合させる代替手段を幅広く探究する。
我々のアプローチは、異なるデータレイアウトを組み合わせることで、メモリ転送に要する時間を最小化することを目的としている。
3レベルのメモリ階層を持つ商用の超低消費電力デバイスであるGreenWaves GAP8 SoCをターゲットにして、エンドツーエンドネットワーク実行のレイテンシを最大11.40%削減する。
さらに、カーネルはL2とL1のメモリ間のアクティベーションデータの動きを最大52.97%削減する。
関連論文リスト
- Learnable Mixed-precision and Dimension Reduction Co-design for
Low-storage Activation [9.838135675969026]
深層畳み込みニューラルネットワーク(CNN)は多くの眼球運動の結果を得た。
リソース制約のあるエッジデバイスにCNNをデプロイすることは、推論中に大きな中間データを送信するためのメモリ帯域幅の制限によって制限される。
チャネルをグループに分割し,その重要度に応じて圧縮ポリシーを割り当てる,学習可能な混合精度・次元縮小協調設計システムを提案する。
論文 参考訳(メタデータ) (2022-07-16T12:53:52Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMNは、KWSのための正確かつ極効率のバイナリニューラルネットワークである。
実世界のエッジハードウェアにおいて,BiFSMNは22.3倍の高速化と15.5倍のストレージ節約を実現可能であることを示す。
論文 参考訳(メタデータ) (2022-02-14T05:16:53Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
ディープニューラルネットワーク(DNN)は、様々なタスクにおいて優れたパフォーマンスを示している。
それらが急速に進化するにつれて、そのエスカレーション計算とメモリ要求により、リソースに制約のあるエッジデバイスへのデプロイが困難になる。
超高速なオンチップ計算で高価なメモリトランザクションを交換するための汎用的で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-25T18:50:24Z) - MAFAT: Memory-Aware Fusing and Tiling of Neural Networks for Accelerated
Edge Inference [1.7894377200944507]
機械学習ネットワークは、利用可能なメモリを容易に越えることができ、OSの過度なスワップによってレイテンシが増加する。
本稿では,メモリ使用量予測器と探索アルゴリズムを組み合わせることで,最適化されたファジングとタイリングの構成を提供する。
その結果、我々のアプローチはメモリの半分以下で実行でき、メモリの厳しい制約下では最大2.78の高速化を実現している。
論文 参考訳(メタデータ) (2021-07-14T19:45:49Z) - FuSeConv: Fully Separable Convolutions for Fast Inference on Systolic
Arrays [2.8583189395674653]
本稿では,深度的に分離可能な畳み込みの代替としてFuSeConvを提案する。
FuSeConvは、空間次元と深さ次元に沿って分離可能な1次元の畳み込みを完全に分解する。
我々は、画像Netデータセットに匹敵する精度で、64x64サイズのシストリックアレイ上で、MobileNetのネットワークファミリで3x-7xの大幅な高速化を実現した。
論文 参考訳(メタデータ) (2021-05-27T20:19:39Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
本稿では,インスタンスの性質に応じて適切な畳み込みカーネルを生成するデータ駆動型アプローチを提案する。
提案手法はScanetNetV2とS3DISの両方で有望な結果が得られる。
また、現在の最先端よりも推論速度を25%以上向上させる。
論文 参考訳(メタデータ) (2020-11-26T14:56:57Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
モバイルデバイス上の畳み込みニューラルネットワーク(CNN)推論は、低精度(INT8)汎用行列乗算(GEMM)の効率的なハードウェアアクセラレーションを必要とする
CNN推論のGEMMをさらに加速する一般的な手法であり、特に、構造的スパーシリティは予測可能な負荷分散と非常に低いインデックスオーバーヘッドの利点がある。
ハードウェアの高利用を保ちながら、さまざまな分散レベルのサポートを提供する方法について、構造的疎結合で重要なアーキテクチャ上の課題に対処する。
論文 参考訳(メタデータ) (2020-09-04T20:17:42Z) - WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic [57.07483440807549]
ニューラルネットワークをアキュムレータの低分解能(8ビット)加算に適応させ,32ビットのアキュムレータに匹敵する分類精度を実現する手法を提案する。
ソフトウェアプラットフォームとハードウェアプラットフォームの両方において、我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-26T23:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。