Accelerating Depthwise Separable Convolutions on Ultra-Low-Power Devices
- URL: http://arxiv.org/abs/2406.12478v1
- Date: Tue, 18 Jun 2024 10:32:40 GMT
- Title: Accelerating Depthwise Separable Convolutions on Ultra-Low-Power Devices
- Authors: Francesco Daghero, Alessio Burrello, Massimo Poncino, Enrico Macii, Daniele Jahier Pagliari,
- Abstract summary: We explore alternatives to fuse the depthwise and pointwise kernels that constitute the separable convolutional block.
Our approach aims to minimize time-consuming memory transfers by combining different data layouts.
- Score: 10.733902200950872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depthwise separable convolutions are a fundamental component in efficient Deep Neural Networks, as they reduce the number of parameters and operations compared to traditional convolutions while maintaining comparable accuracy. However, their low data reuse opportunities make deploying them notoriously difficult. In this work, we perform an extensive exploration of alternatives to fuse the depthwise and pointwise kernels that constitute the separable convolutional block. Our approach aims to minimize time-consuming memory transfers by combining different data layouts. When targeting a commercial ultra-low-power device with a three-level memory hierarchy, the GreenWaves GAP8 SoC, we reduce the latency of end-to-end network execution by up to 11.40%. Furthermore, our kernels reduce activation data movements between L2 and L1 memories by up to 52.97%.
Related papers
- Learnable Mixed-precision and Dimension Reduction Co-design for
Low-storage Activation [9.838135675969026]
Deep convolutional neural networks (CNNs) have achieved many eye-catching results.
deploying CNNs on resource-constrained edge devices is constrained by limited memory bandwidth for transmitting large intermediated data during inference.
We propose a learnable mixed-precision and dimension reduction co-design system, which separates channels into groups and allocates compression policies according to their importance.
arXiv Detail & Related papers (2022-07-16T12:53:52Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMN is an accurate and extreme-efficient binary neural network for KWS.
We show that BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware.
arXiv Detail & Related papers (2022-02-14T05:16:53Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
Deep neural networks (DNN) have shown superior performance in a variety of tasks.
As they rapidly evolve, their escalating computation and memory demands make it challenging to deploy them on resource-constrained edge devices.
We propose a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations.
arXiv Detail & Related papers (2021-08-25T18:50:24Z) - MAFAT: Memory-Aware Fusing and Tiling of Neural Networks for Accelerated
Edge Inference [1.7894377200944507]
Machine learning networks can easily exceed available memory, increasing latency due to excessive OS swapping.
We propose a memory usage predictor coupled with a search algorithm to provide optimized fusing and tiling configurations.
Results show that our approach can run in less than half the memory, and with a speedup of up to 2.78 under severe memory constraints.
arXiv Detail & Related papers (2021-07-14T19:45:49Z) - FuSeConv: Fully Separable Convolutions for Fast Inference on Systolic
Arrays [2.8583189395674653]
We propose FuSeConv as a drop-in replacement for depth-wise separable convolution.
FuSeConv generalizes the decomposition of convolutions fully to separable 1D convolutions along spatial and depth dimensions.
We achieve a significant speed-up of 3x-7x with the MobileNet family of networks on a systolic array of size 64x64, with comparable accuracy on the ImageNet dataset.
arXiv Detail & Related papers (2021-05-27T20:19:39Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8) general matrix multiplication (GEMM)
Exploiting data sparsity is a common approach to further accelerate GEMM for CNN inference, and in particular, structural sparsity has the advantages of predictable load balancing and very low index overhead.
We address a key architectural challenge with structural sparsity: how to provide support for a range of sparsity levels while maintaining high utilization of the hardware.
arXiv Detail & Related papers (2020-09-04T20:17:42Z) - WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic [57.07483440807549]
We propose a method that adapts neural networks to use low-resolution (8-bit) additions in the accumulators, achieving classification accuracy comparable to their 32-bit counterparts.
We demonstrate the efficacy of our approach on both software and hardware platforms.
arXiv Detail & Related papers (2020-07-26T23:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.