Variational Distillation of Diffusion Policies into Mixture of Experts
- URL: http://arxiv.org/abs/2406.12538v2
- Date: Fri, 18 Oct 2024 20:28:06 GMT
- Title: Variational Distillation of Diffusion Policies into Mixture of Experts
- Authors: Hongyi Zhou, Denis Blessing, Ge Li, Onur Celik, Xiaogang Jia, Gerhard Neumann, Rudolf Lioutikov,
- Abstract summary: This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE)
Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions.
VDD is the first method that distills pre-trained diffusion models into MoE models, and hence, combines the expressiveness of Diffusion Models with the benefits of Mixture Models.
- Score: 26.315682445979302
- License:
- Abstract: This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE) through variational inference. Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions. This ability allows Diffusion Models to replicate the inherent diversity in human behavior, making them the preferred models in behavior learning such as Learning from Human Demonstrations (LfD). However, diffusion models come with some drawbacks, including the intractability of likelihoods and long inference times due to their iterative sampling process. The inference times, in particular, pose a significant challenge to real-time applications such as robot control. In contrast, MoEs effectively address the aforementioned issues while retaining the ability to represent complex distributions but are notoriously difficult to train. VDD is the first method that distills pre-trained diffusion models into MoE models, and hence, combines the expressiveness of Diffusion Models with the benefits of Mixture Models. Specifically, VDD leverages a decompositional upper bound of the variational objective that allows the training of each expert separately, resulting in a robust optimization scheme for MoEs. VDD demonstrates across nine complex behavior learning tasks, that it is able to: i) accurately distill complex distributions learned by the diffusion model, ii) outperform existing state-of-the-art distillation methods, and iii) surpass conventional methods for training MoE.
Related papers
- Physics Informed Distillation for Diffusion Models [21.173298037358954]
We introduce Physics Informed Distillation (PID), which employs a student model to represent the solution of the ODE system corresponding to the teacher diffusion model.
We observe that PID performance achieves comparable to recent distillation methods.
arXiv Detail & Related papers (2024-11-13T07:03:47Z) - DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
Diffusion models excel at generative modeling (e.g., text-to-image) but sampling requires multiple denoising network passes.
Progressive distillation or consistency distillation have shown promise by reducing the number of passes.
We show that DDIL consistency improves on baseline algorithms of progressive distillation (PD), Latent consistency models (LCM) and Distribution Matching Distillation (DMD2)
arXiv Detail & Related papers (2024-10-15T18:21:47Z) - Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
"Mixture" models in discrete diffusion are capable of treating dimensional correlations while remaining scalable.
We empirically demonstrate that our proposed method for discrete diffusions work in practice, by distilling a continuous-time discrete diffusion model pretrained on the CIFAR-10 dataset.
arXiv Detail & Related papers (2024-10-11T10:53:03Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - How Diffusion Models Learn to Factorize and Compose [14.161975556325796]
Diffusion models are capable of generating photo-realistic images that combine elements which likely do not appear together in the training set.
We investigate whether and when diffusion models learn semantically meaningful and factorized representations of composable features.
arXiv Detail & Related papers (2024-08-23T17:59:03Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
We show that current diffusion models actually have an expressive bottleneck in backward denoising.
We introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising.
arXiv Detail & Related papers (2023-09-25T12:03:32Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.