Physics Informed Distillation for Diffusion Models
- URL: http://arxiv.org/abs/2411.08378v1
- Date: Wed, 13 Nov 2024 07:03:47 GMT
- Title: Physics Informed Distillation for Diffusion Models
- Authors: Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo Kim, Chang D. Yoo,
- Abstract summary: We introduce Physics Informed Distillation (PID), which employs a student model to represent the solution of the ODE system corresponding to the teacher diffusion model.
We observe that PID performance achieves comparable to recent distillation methods.
- Score: 21.173298037358954
- License:
- Abstract: Diffusion models have recently emerged as a potent tool in generative modeling. However, their inherent iterative nature often results in sluggish image generation due to the requirement for multiple model evaluations. Recent progress has unveiled the intrinsic link between diffusion models and Probability Flow Ordinary Differential Equations (ODEs), thus enabling us to conceptualize diffusion models as ODE systems. Simultaneously, Physics Informed Neural Networks (PINNs) have substantiated their effectiveness in solving intricate differential equations through implicit modeling of their solutions. Building upon these foundational insights, we introduce Physics Informed Distillation (PID), which employs a student model to represent the solution of the ODE system corresponding to the teacher diffusion model, akin to the principles employed in PINNs. Through experiments on CIFAR 10 and ImageNet 64x64, we observe that PID achieves performance comparable to recent distillation methods. Notably, it demonstrates predictable trends concerning method-specific hyperparameters and eliminates the need for synthetic dataset generation during the distillation process. Both of which contribute to its easy-to-use nature as a distillation approach for Diffusion Models. Our code and pre-trained checkpoint are publicly available at: https://github.com/pantheon5100/pid_diffusion.git.
Related papers
- Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
"Mixture" models in discrete diffusion are capable of treating dimensional correlations while remaining scalable.
We empirically demonstrate that our proposed method for discrete diffusions work in practice, by distilling a continuous-time discrete diffusion model pretrained on the CIFAR-10 dataset.
arXiv Detail & Related papers (2024-10-11T10:53:03Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
We present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model.
PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images.
We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data.
arXiv Detail & Related papers (2024-10-04T07:05:16Z) - Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models [12.327318533784961]
We present a maximum reinforcement learning (IRL) approach for improving the sample quality of diffusion generative models.
We train (or fine-tune) a diffusion model using the log density estimated from training data.
Our empirical studies show that diffusion models fine-tuned using DxMI can generate high-quality samples in as few as 4 and 10 steps.
arXiv Detail & Related papers (2024-06-30T08:52:17Z) - Variational Distillation of Diffusion Policies into Mixture of Experts [26.315682445979302]
This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE)
Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions.
VDD is the first method that distills pre-trained diffusion models into MoE models, and hence, combines the expressiveness of Diffusion Models with the benefits of Mixture Models.
arXiv Detail & Related papers (2024-06-18T12:15:05Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.