論文の概要: Towards Bayesian Data Selection
- arxiv url: http://arxiv.org/abs/2406.12560v2
- Date: Mon, 24 Jun 2024 08:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 23:54:21.215192
- Title: Towards Bayesian Data Selection
- Title(参考訳): ベイジアンデータ選択に向けて
- Authors: Julian Rodemann,
- Abstract要約: 例えば、セミ教師付き学習、アクティブラーニング、マルチアームのバンディット、ベイズ最適化などがある。
意思決定問題としてデータ選択をフレーミングすることで、このようなデータ追加を意思決定理論に組み込む。
半教師付き学習における自己学習の具体例について,各ベイズ基準を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.
- Abstract(参考訳): 幅広い機械学習アルゴリズムがトレーニングサンプルに反復的にデータを追加する。
例えば、セミ教師付き学習、アクティブラーニング、マルチアームのバンディット、ベイズ最適化などがある。
意思決定問題としてデータ選択をフレーミングすることで、このようなデータ追加を意思決定理論に組み込む。
これにより、ベイズ最適データ選択の道が開ける。
半教師付き学習における自己学習の具体例について,各ベイズ基準を導出する。
さらに, この基準の展開は, 一般化線形モデル, 半パラメトリック一般化付加モデル, および実世界データ上でのベイズニューラルネットワークの手法を実証的に評価することにより, 検証バイアスの問題を緩和することを示した。
関連論文リスト
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
我々は、全人口の複数のセグメントにまたがってデータ分布が変化するシナリオに焦点を当てる。
そこで本研究では,各セグメントのモデル性能を改善するために,二段階多重ロバスト推定法を提案する。
本手法は,市販の機械学習モデルを用いて実装されるように設計されている。
論文 参考訳(メタデータ) (2024-02-21T22:01:10Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - In all LikelihoodS: How to Reliably Select Pseudo-Labeled Data for
Self-Training in Semi-Supervised Learning [0.0]
自己学習は、半教師あり学習においてシンプルだが効果的な方法である。
本稿では,PSSをより堅牢にモデル化する手法を提案する。
結果は、特にロバスト性 w.r.t. モデル選択がかなりの精度の向上をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-03-02T10:00:37Z) - Achieving Representative Data via Convex Hull Feasibility Sampling
Algorithms [35.29582673348303]
トレーニングデータのバイアスをサンプリングすることは、機械学習システムにおけるアルゴリズムバイアスの主要な原因である。
得られたデータから代表的データセットを収集できるかどうかを高信頼で判断するために,適応的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T23:14:05Z) - Sampling Bias Correction for Supervised Machine Learning: A Bayesian
Inference Approach with Practical Applications [0.0]
本稿では,データセットがラベルの不均衡などの意図的なサンプルバイアスを受ける可能性がある問題について議論する。
次に、この解をバイナリロジスティック回帰に適用し、データセットが意図的にサンプルバイアスを受けるシナリオについて議論する。
この手法は, 医療科学から画像認識, マーケティングに至るまで, ビッグデータの統計的推測に広く応用できる。
論文 参考訳(メタデータ) (2022-03-11T20:46:37Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
我々は,任意のラウンドにおいて高い確率で最良のモデルをラベル付けし,出力する情報的サンプルを積極的に選択するオンライン選択的サンプリング手法を設計する。
我々のアルゴリズムは、敵とストリームの両方のオンライン予測タスクに利用できる。
論文 参考訳(メタデータ) (2020-10-19T19:53:15Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
可逆ニューラルネットワークに基づく世界規模のベイズ推定手法を提案する。
BayesFlowは、観測されたデータを最大情報的な要約統計に埋め込むよう訓練された要約ネットワークを組み込んでいる。
本研究では, 人口動態, 疫学, 認知科学, 生態学の難易度モデルに対するベイズフローの有用性を実証する。
論文 参考訳(メタデータ) (2020-03-13T13:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。