RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2406.12566v3
- Date: Tue, 01 Oct 2024 04:42:48 GMT
- Title: RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation
- Authors: Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, Zhicheng Dou,
- Abstract summary: We propose a novel RAG framework, namely RichRAG.
It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker.
Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
- Score: 35.981443744108255
- License:
- Abstract: Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
Related papers
- DMQR-RAG: Diverse Multi-Query Rewriting for RAG [26.518517678671376]
Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability.
We introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework to improve the performance of both document retrieval and final responses in RAG.
arXiv Detail & Related papers (2024-11-20T09:43:30Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
Long-form text generation requires coherent, comprehensive responses that address complex queries with both breadth and depth.
Existing iterative retrieval-augmented generation approaches often struggle to delve deeply into each facet of complex queries.
This paper introduces ConTReGen, a novel framework that employs a context-driven, tree-structured retrieval approach.
arXiv Detail & Related papers (2024-10-20T21:17:05Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAG has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA)
We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query.
A two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers.
arXiv Detail & Related papers (2024-06-11T15:15:33Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs)
Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents.
This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.