Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models
- URL: http://arxiv.org/abs/2406.12572v2
- Date: Wed, 19 Jun 2024 12:28:10 GMT
- Title: Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models
- Authors: Eldar Kurtic, Amir Moeini, Dan Alistarh,
- Abstract summary: We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs)
Mathador-LM is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers.
- Score: 34.814875040792344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs), combining ruleset interpretation, planning, and problem-solving. This benchmark is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers, following a simple set of rules. We show that, across leading LLMs, we obtain stable average performance while generating benchmark instances dynamically, following a target difficulty level. Thus, our benchmark alleviates concerns about test-set leakage into training data, an issue that often undermines popular benchmarks. Additionally, we conduct a comprehensive evaluation of both open and closed-source state-of-the-art LLMs on Mathador-LM. Our findings reveal that contemporary models struggle with Mathador-LM, scoring significantly lower than average 3rd graders. This stands in stark contrast to their strong performance on popular mathematical reasoning benchmarks.
Related papers
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
arXiv Detail & Related papers (2024-10-07T02:30:07Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
We present a method for creating benchmark variations that generalize across coding tasks and programming languages.
We implement one benchmark, called textitauto-regression, for the task of text-to-code generation in Python.
arXiv Detail & Related papers (2024-07-29T08:11:20Z) - LiveBench: A Challenging, Contamination-Free LLM Benchmark [101.21578097087699]
We release LiveBench, the first benchmark that contains frequently-updated questions from recent information sources.
We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size.
Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time.
arXiv Detail & Related papers (2024-06-27T16:47:42Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
We propose MixEval, a new paradigm for establishing efficient, gold-standard evaluation by strategically mixing off-the-shelf benchmarks.
It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks.
arXiv Detail & Related papers (2024-06-03T05:47:05Z) - ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline [42.61538071832468]
Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving.
We tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment.
arXiv Detail & Related papers (2024-04-03T17:51:18Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.