論文の概要: Not Everything is All You Need: Toward Low-Redundant Optimization for Large Language Model Alignment
- arxiv url: http://arxiv.org/abs/2406.12606v2
- Date: Thu, 03 Oct 2024 02:18:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 23:30:26.145246
- Title: Not Everything is All You Need: Toward Low-Redundant Optimization for Large Language Model Alignment
- Title(参考訳): 必要なものすべてではない:大規模言語モデルアライメントの低冗長最適化に向けて
- Authors: Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Jingyuan Wang, Ji-Rong Wen,
- Abstract要約: 大規模言語モデル(LLM)は、複雑なタスクやシナリオにおいて、人間の好みに合わせるのに依然として苦労しています。
我々は、最も有用な教師付き信号を用いて、最も関連性の高いニューロンを最適化することに焦点を当てた、textbfALLOという低輝度アライメント手法を提案する。
10個のデータセットに対する実験結果から、ALLOの有効性が示された。
- 参考スコア(独自算出の注目度): 126.34547428473968
- License:
- Abstract: Large language models (LLMs) are still struggling in aligning with human preference in complex tasks and scenarios. They are prone to overfit into the unexpected patterns or superficial styles in the training data. We conduct an empirical study that only selects the top-10\% most updated parameters in LLMs for alignment training, and see improvements in the convergence process and final performance. It indicates the existence of redundant neurons in LLMs for alignment training. To reduce its influence, we propose a low-redundant alignment method named \textbf{ALLO}, focusing on optimizing the most related neurons with the most useful supervised signals. Concretely, we first identify the neurons that are related to the human preference data by a gradient-based strategy, then identify the alignment-related key tokens by reward models for computing loss. Besides, we also decompose the alignment process into the forgetting and learning stages, where we first forget the tokens with unaligned knowledge and then learn aligned knowledge, by updating different ratios of neurons, respectively. Experimental results on 10 datasets have shown the effectiveness of ALLO. Our code and data are available at \url{https://github.com/RUCAIBox/ALLO}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、複雑なタスクやシナリオにおいて、人間の好みに合わせるのに依然として苦労しています。
トレーニングデータの予期せぬパターンや表面的なスタイルに過度に適合する傾向があります。
我々は,LLMにおけるアライメントトレーニングにおける最上位10倍のパラメータのみを選択する実験的な研究を行い,収束過程と最終性能の改善を確認した。
これは、アライメントトレーニングのためのLSMに冗長ニューロンが存在することを示している。
その影響を低減するために,最も有用な教師付き信号で最も関連性の高いニューロンを最適化することを目的とした,低輝度アライメント法である「textbf{ALLO}」を提案する。
具体的には、まず、勾配に基づく戦略により人間の嗜好データに関連するニューロンを特定し、次に、計算損失に対する報酬モデルによりアライメント関連キートークンを同定する。
さらに、アライメントプロセスを、まず不整合知識を持つトークンを忘れ、次に、それぞれ異なるニューロンの比率を更新することによって、アライメントの過程を忘れ、学習段階に分解する。
10個のデータセットに対する実験結果から、ALLOの有効性が示された。
私たちのコードとデータは、 \url{https://github.com/RUCAIBox/ALLO}で利用可能です。
関連論文リスト
- Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training [3.195234044113248]
我々は、高密度事前学習モデルの関数情報を利用して、アクティベーションのアライメントw.r.tを最大化するスパースモデルを得る。
我々は,アクティベーション間のニューロンアライメントを最大化するために,ブロックワイドと行ワイドの間隔比を変更するエンフェップアップアルゴリズムであるtextscNeuroAlを提案する。
提案手法は,4つの異なるLLMファミリーと3つの異なる空間比で検証し,最新の最先端技術よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2024-11-11T15:30:16Z) - Reformatted Alignment [27.79684742862816]
データ品質を改善するための現在の手法は、労働集約的であるか、幻覚によって引き起こされる事実上の誤りを招きやすいかのいずれかである。
本稿では,ReAlignという簡易かつ効果的な手法を導入し,命令データの応答を予め確立された基準と照合された証拠に適合する形式に再構成する。
実験的に、ReAlignはLLMの一般的なアライメント能力、数学的推論、事実性、可読性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-19T15:21:58Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
リニアアライメントは、言語モデルと人間の好みを1つの推論ステップで整列する新しいアルゴリズムである。
一般的な選好データセットとパーソナライズされた選好データセットの実験により、線形アライメントはLLMアライメントの性能と効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-21T10:46:23Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
我々はFIGAという改良されたアライメント手法を提案し、従来の手法とは異なり、良質な応答と悪質な応答の対比から導出されるきめ細かい品質信号を取り込む。
まず、初期応答とそれに対応する修正データセットをペアリングする精巧なアライメントデータセットをキュレートする。
第2に,LLMの微粒な品質信号を利用してアライメントの学習を指導する新たな損失関数を考案する。
論文 参考訳(メタデータ) (2023-11-07T15:36:40Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Neural Collapse Terminus: A Unified Solution for Class Incremental
Learning and Its Variants [166.916517335816]
本稿では,3つの課題における不整合ジレンマに対する統一解を提案する。
ラベル空間全体の最大等角的クラス間分離を有する固定構造である神経崩壊終端を提案する。
本手法は,データ不均衡やデータ不足にかかわらず,神経崩壊最適度を漸進的に保持する。
論文 参考訳(メタデータ) (2023-08-03T13:09:59Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
我々は、ディープニューラルネットワーク(DNN)のためのオンライン学習パラダイムであるLearning, Unlearn, and Relearn(LURE)を紹介する。
LUREは、モデルの望ましくない情報を選択的に忘れる未学習フェーズと、一般化可能な特徴の学習を強調する再学習フェーズとを交換する。
トレーニングパラダイムは、分類と少数ショット設定の両方において、データセット間で一貫したパフォーマンス向上を提供します。
論文 参考訳(メタデータ) (2023-03-18T16:45:54Z) - DCLP: Neural Architecture Predictor with Curriculum Contrastive Learning [5.2319020651074215]
ニューラル予測器(DCLP)のためのカリキュラム誘導型コントラスト学習フレームワークを提案する。
本手法は,新たなカリキュラムを設計し,ラベルのないトレーニングデータ分布の安定性を高めることで,対照的なタスクを単純化する。
我々は既存の予測器と比較してDCLPの精度と効率が優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2023-02-25T08:16:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。