Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Image Synthesis: T1 MRI to Tau-PET
- URL: http://arxiv.org/abs/2406.12632v1
- Date: Tue, 18 Jun 2024 13:59:10 GMT
- Title: Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Image Synthesis: T1 MRI to Tau-PET
- Authors: Symac Kim, Junho Moon, Haejun Chung, Ikbeom Jang,
- Abstract summary: Alzheimer's Disease is the most common form of dementia, characterised by cognitive decline and biomarkers such as tau-proteins.
Tau-positron emission tomography (tau-PET) is valuable for early AD diagnosis but is less accessible due to high costs, limited availability, and its invasive nature.
Image synthesis with neural networks enables the generation of tau-PET images from more accessible T1-weighted magnetic resonance imaging (MRI) images.
- Score: 0.04924932828166548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease (AD) is the most common form of dementia, characterised by cognitive decline and biomarkers such as tau-proteins. Tau-positron emission tomography (tau-PET), which employs a radiotracer to selectively bind, detect, and visualise tau protein aggregates within the brain, is valuable for early AD diagnosis but is less accessible due to high costs, limited availability, and its invasive nature. Image synthesis with neural networks enables the generation of tau-PET images from more accessible T1-weighted magnetic resonance imaging (MRI) images. To ensure high-quality image synthesis, we propose a cyclic 2.5D perceptual loss combined with mean squared error and structural similarity index measure (SSIM) losses. The cyclic 2.5D perceptual loss sequentially calculates the axial 2D average perceptual loss for a specified number of epochs, followed by the coronal and sagittal planes for the same number of epochs. This sequence is cyclically performed, with intervals reducing as the cycles repeat. We conduct supervised synthesis of tau-PET images from T1w MRI images using 516 paired T1w MRI and tau-PET 3D images from the ADNI database. For the collected data, we perform preprocessing, including intensity standardisation for tau-PET images from each manufacturer. The proposed loss, applied to generative 3D U-Net and its variants, outperformed those with 2.5D and 3D perceptual losses in SSIM and peak signal-to-noise ratio (PSNR). In addition, including the cyclic 2.5D perceptual loss to the original losses of GAN-based image synthesis models such as CycleGAN and Pix2Pix improves SSIM and PSNR by at least 2% and 3%. Furthermore, by-manufacturer PET standardisation helps the models in synthesising high-quality images than min-max PET normalisation.
Related papers
- Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
We propose a Cycle-versa Adrial Denoising Convolutional Network (Cycle-DCN) to reconstruct full-dose-quality images from low-dose scans.
Experiments were conducted on a large dataset consisting of raw PET brain data from 1,224 patients.
Cycle-DCN significantly improves average Peak Signal-to-Noise Ratio (PSNR), SSIM, and Normalized Root Mean Square Error (NRMSE) across three dose levels.
arXiv Detail & Related papers (2024-10-31T04:34:28Z) - Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI [5.190302448685122]
We propose a framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM)
The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase.
The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth.
arXiv Detail & Related papers (2024-05-03T22:33:46Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
Alzheimer's Disease hallmarks include amyloid-beta deposits and brain atrophy.
PET is expensive, invasive and exposes patients to ionizing radiation.
MRI is cheaper, non-invasive, and free from ionizing radiation but limited to measuring brain atrophy.
arXiv Detail & Related papers (2024-05-03T14:10:29Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
Recent methods to generate high-quality PET images from low-dose counterparts have been reported to be state-of-the-art for low-to-high image recovery methods.
To address these issues, we developed a self-supervised adaptive residual estimation generative adversarial network (SS-AEGAN)
SS-AEGAN consistently outperformed the state-of-the-art synthesis methods with various dose reduction factors.
arXiv Detail & Related papers (2023-10-24T06:43:56Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction
from Low-Dose Sinograms [45.24575167909925]
TriDoFormer is a transformer-based model that unites triple domains of sinogram, image, and frequency for direct reconstruction.
It outperforms state-of-the-art methods qualitatively and quantitatively.
GFP serves as a learnable frequency filter that adjusts the frequency components in the frequency domain, enforcing the network to restore high-frequency details.
arXiv Detail & Related papers (2023-08-10T06:20:00Z) - CG-3DSRGAN: A classification guided 3D generative adversarial network
for image quality recovery from low-dose PET images [10.994223928445589]
High radioactivity caused by the injected tracer dose is a major concern in PET imaging.
Reducing the dose leads to inadequate image quality for diagnostic practice.
CNNs-based methods have been developed for high quality PET synthesis from its low-dose counterparts.
arXiv Detail & Related papers (2023-04-03T05:39:02Z) - Synthetic PET via Domain Translation of 3D MRI [1.0052333944678682]
We use a dataset of 56 $18$F-FDG-PET/MRI exams to train a 3D residual UNet to predict physiologic PET uptake from whole-body T1-weighted MRI.
The predicted PET images are forward projected to produce synthetic PET time-of-flight sinograms that can be used with vendor-provided PET reconstruction algorithms.
arXiv Detail & Related papers (2022-06-11T21:32:40Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.