Transforming Surgical Interventions with Embodied Intelligence for Ultrasound Robotics
- URL: http://arxiv.org/abs/2406.12651v1
- Date: Tue, 18 Jun 2024 14:22:16 GMT
- Title: Transforming Surgical Interventions with Embodied Intelligence for Ultrasound Robotics
- Authors: Huan Xu, Jinlin Wu, Guanglin Cao, Zhen Chen, Zhen Lei, Hongbin Liu,
- Abstract summary: This paper introduces a novel Ultrasound Embodied Intelligence system that combines ultrasound robots with large language models (LLMs) and domain-specific knowledge augmentation.
Our approach employs a dual strategy: firstly, integrating LLMs with ultrasound robots to interpret doctors' verbal instructions into precise motion planning.
Our findings suggest that the proposed system improves the efficiency and quality of ultrasound scans and paves the way for further advancements in autonomous medical scanning technologies.
- Score: 24.014073238400137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasonography has revolutionized non-invasive diagnostic methodologies, significantly enhancing patient outcomes across various medical domains. Despite its advancements, integrating ultrasound technology with robotic systems for automated scans presents challenges, including limited command understanding and dynamic execution capabilities. To address these challenges, this paper introduces a novel Ultrasound Embodied Intelligence system that synergistically combines ultrasound robots with large language models (LLMs) and domain-specific knowledge augmentation, enhancing ultrasound robots' intelligence and operational efficiency. Our approach employs a dual strategy: firstly, integrating LLMs with ultrasound robots to interpret doctors' verbal instructions into precise motion planning through a comprehensive understanding of ultrasound domain knowledge, including APIs and operational manuals; secondly, incorporating a dynamic execution mechanism, allowing for real-time adjustments to scanning plans based on patient movements or procedural errors. We demonstrate the effectiveness of our system through extensive experiments, including ablation studies and comparisons across various models, showcasing significant improvements in executing medical procedures from verbal commands. Our findings suggest that the proposed system improves the efficiency and quality of ultrasound scans and paves the way for further advancements in autonomous medical scanning technologies, with the potential to transform non-invasive diagnostics and streamline medical workflows.
Related papers
- Patient-Specific Real-Time Segmentation in Trackerless Brain Ultrasound [35.526097492693864]
Intraoperative ultrasound (iUS) imaging has the potential to improve surgical outcomes in brain surgery.
But its interpretation is challenging, even for expert neurosurgeons.
In this work, we designed the first patient-specific framework that performs brain tumor segmentation in trackerless iUS.
arXiv Detail & Related papers (2024-05-16T10:07:30Z) - Enhancing Surgical Robots with Embodied Intelligence for Autonomous Ultrasound Scanning [24.014073238400137]
Ultrasound robots are increasingly used in medical diagnostics and early disease screening.
Current ultrasound robots lack the intelligence to understand human intentions and instructions.
We propose a novel Ultrasound Embodied Intelligence system that equips ultrasound robots with the large language model and domain knowledge.
arXiv Detail & Related papers (2024-05-01T11:39:38Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Learning Autonomous Ultrasound via Latent Task Representation and
Robotic Skills Adaptation [2.3830437836694185]
We propose the latent task representation and the robotic skills adaptation for autonomous ultrasound in this paper.
During the offline stage, the multimodal ultrasound skills are merged and encapsulated into a low-dimensional probability model.
During the online stage, the probability model will select and evaluate the optimal prediction.
arXiv Detail & Related papers (2023-07-25T08:32:36Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Learning Robotic Ultrasound Scanning Skills via Human Demonstrations and
Guided Explorations [12.894853456160924]
We propose a learning-based approach to learn the robotic ultrasound scanning skills from human demonstrations.
First, the robotic ultrasound scanning skill is encapsulated into a high-dimensional multi-modal model, which takes the ultrasound images, the pose/position of the probe and the contact force into account.
Second, we leverage the power of imitation learning to train the multi-modal model with the training data collected from the demonstrations of experienced ultrasound physicians.
arXiv Detail & Related papers (2021-11-02T14:38:09Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.