Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
- URL: http://arxiv.org/abs/2504.15327v2
- Date: Wed, 23 Apr 2025 15:44:20 GMT
- Title: Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
- Authors: Tianliang Yao, Bo Lu, Markus Kowarschik, Yixuan Yuan, Hubin Zhao, Sebastien Ourselin, Kaspar Althoefer, Junbo Ge, Peng Qi,
- Abstract summary: The integration of Embodied Intelligence into robotic systems signifies a paradigm shift.<n>Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution.<n>We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted procedures.
- Score: 27.68772584578631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
Related papers
- The Impact of Artificial Intelligence on Emergency Medicine: A Review of Recent Advances [0.2544903230401084]
Artificial Intelligence (AI) is revolutionizing emergency medicine by enhancing diagnostic processes and improving patient outcomes.<n>Machine learning and deep learning are pivotal in interpreting complex imaging data, offering rapid, accurate diagnoses and potentially surpassing traditional diagnostic methods.<n>Despite these advancements, the integration of AI into clinical practice presents challenges such as data privacy, algorithmic bias, and the need for extensive validation across diverse settings.
arXiv Detail & Related papers (2025-03-17T17:45:00Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)<n>It focuses on medical practices within the visual, audio, and multimodal perspectives.<n>We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Transforming Surgical Interventions with Embodied Intelligence for Ultrasound Robotics [24.014073238400137]
This paper introduces a novel Ultrasound Embodied Intelligence system that combines ultrasound robots with large language models (LLMs) and domain-specific knowledge augmentation.
Our approach employs a dual strategy: firstly, integrating LLMs with ultrasound robots to interpret doctors' verbal instructions into precise motion planning.
Our findings suggest that the proposed system improves the efficiency and quality of ultrasound scans and paves the way for further advancements in autonomous medical scanning technologies.
arXiv Detail & Related papers (2024-06-18T14:22:16Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
We discuss early achievements in development of explainable AI for validation of known disease criteria.
We highlight some of the remaining challenges that stand in the way of practical applications of AI as a clinical decision support tool.
arXiv Detail & Related papers (2020-11-26T08:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.