論文の概要: Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly
- arxiv url: http://arxiv.org/abs/2406.12698v1
- Date: Tue, 18 Jun 2024 15:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:28:51.109844
- Title: Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly
- Title(参考訳): 航空機組立における欠陥識別のためのオンライン適応型異常検出
- Authors: Siddhant Shete, Dennis Mronga, Ankita Jadhav, Frank Kirchner,
- Abstract要約: 異常検出は、データ内の確立されたパターンから逸脱を検出する。
本稿では,移動学習を用いたオンライン適応型異常検出のための新しいフレームワークを提案する。
実験結果は0.975を超える検出精度を示し、最先端のET-NETアプローチよりも優れていた。
- 参考スコア(独自算出の注目度): 4.387337528923525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection deals with detecting deviations from established patterns within data. It has various applications like autonomous driving, predictive maintenance, and medical diagnosis. To improve anomaly detection accuracy, transfer learning can be applied to large, pre-trained models and adapt them to the specific application context. In this paper, we propose a novel framework for online-adaptive anomaly detection using transfer learning. The approach adapts to different environments by selecting visually similar training images and online fitting a normality model to EfficientNet features extracted from the training subset. Anomaly detection is then performed by computing the Mahalanobis distance between the normality model and the test image features. Different similarity measures (SIFT/FLANN, Cosine) and normality models (MVG, OCSVM) are employed and compared with each other. We evaluate the approach on different anomaly detection benchmarks and data collected in controlled laboratory settings. Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
- Abstract(参考訳): 異常検出は、データ内の確立されたパターンから逸脱を検出する。
自律運転、予測保守、医療診断など様々な応用がある。
異常検出精度を向上させるために、転送学習を大規模で事前訓練されたモデルに適用し、特定のアプリケーションコンテキストに適応させることができる。
本稿では,移動学習を用いたオンライン適応型異常検出のための新しいフレームワークを提案する。
このアプローチは、視覚的に類似したトレーニングイメージを選択し、トレーニングサブセットから抽出したEfficientNet機能に正規性モデルを適用することで、異なる環境に適応する。
次に、正規度モデルとテスト画像特徴との間のマハラノビス距離を計算して異常検出を行う。
異なる類似度尺度 (SIFT/FLANN, Cosine) と正規度モデル (MVG, OCSVM) が採用され、互いに比較される。
本研究では,異なる異常検出ベンチマークと,制御された実験室で収集したデータに対するアプローチを評価する。
実験結果は0.975を超える検出精度を示し、最先端のET-NETアプローチよりも優れていた。
関連論文リスト
- Systematic Review: Anomaly Detection in Connected and Autonomous Vehicles [0.0]
この系統的なレビューは、連結車両と自律車両の異常検出に焦点を当てている。
異常検出に最もよく使用される人工知能(AI)アルゴリズムは、LSTM、CNN、オートエンコーダなどのニューラルネットワークと1クラスのSVMである。
自動車への異常検出の展開を調査し,道路上での性能評価を行うためには,今後の研究が必要である。
論文 参考訳(メタデータ) (2024-05-04T18:31:38Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
論文 参考訳(メタデータ) (2022-05-03T08:20:15Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z) - Simple Adaptive Projection with Pretrained Features for Anomaly
Detection [0.0]
本稿では,単純な線形変換と自己注意を含む新しい適応フレームワークを提案する。
事前訓練した特徴を持つ簡易適応投影法(SAP2)により,新しい異常検出基準が得られた。
論文 参考訳(メタデータ) (2021-12-05T15:29:59Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
畳み込みニューラルネットワーク(CNN)技術は、画像ベースの異常検出アプリケーションにおいて非常に有用であることが証明されている。
モデル・オブ・ノーマル性(MoN)を用いた類似度尺度に基づく異常検出のための伝達学習フレームワークを提案する。
提案したしきい値設定により,大幅な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-11-12T05:26:32Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
本稿では,マルチセンサデータと特徴選択に基づく動的システムの異常検出手法を提案する。
成長型ニューラルガス(GNG)は、マルチセンサーデータを一連のノードにクラスタリングするために使用される。
本手法は状態推定と異常検出にマルコフジャンプ粒子フィルタ(MJPF)を用いる。
論文 参考訳(メタデータ) (2020-10-28T11:38:51Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。