論文の概要: TracInAD: Measuring Influence for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2205.01362v4
- Date: Tue, 30 Jan 2024 13:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 20:03:01.508188
- Title: TracInAD: Measuring Influence for Anomaly Detection
- Title(参考訳): TracInAD:異常検出への影響の測定
- Authors: Hugo Thimonier, Fabrice Popineau, Arpad Rimmel, Bich-Li\^en Doan and
Fabrice Daniel
- Abstract要約: 本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As with many other tasks, neural networks prove very effective for anomaly
detection purposes. However, very few deep-learning models are suited for
detecting anomalies on tabular datasets. This paper proposes a novel
methodology to flag anomalies based on TracIn, an influence measure initially
introduced for explicability purposes. The proposed methods can serve to
augment any unsupervised deep anomaly detection method. We test our approach
using Variational Autoencoders and show that the average influence of a
subsample of training points on a test point can serve as a proxy for
abnormality. Our model proves to be competitive in comparison with
state-of-the-art approaches: it achieves comparable or better performance in
terms of detection accuracy on medical and cyber-security tabular benchmark
data.
- Abstract(参考訳): 他の多くのタスクと同様に、ニューラルネットワークは異常検出に非常に効果的である。
しかし、テーブル型データセットで異常を検出するのに適したディープラーニングモデルはほとんどない。
本稿では,本研究で最初に導入したインフルエンス指標であるtracinに基づく異常をフラグする新しい手法を提案する。
提案手法は, 教師なし深部異常検出手法の強化に有効である。
提案手法は変動型オートエンコーダを用いてテストし,実験点に対する訓練点のサブサンプルの平均的影響が異常の指標となりうることを示した。
我々のモデルは、最先端のアプローチと比較して競争力があることを証明している。医療およびサイバーセキュリティの表型ベンチマークデータに対する検出精度において、同等またはより良いパフォーマンスを達成する。
関連論文リスト
- Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly [4.387337528923525]
異常検出は、データ内の確立されたパターンから逸脱を検出する。
本稿では,移動学習を用いたオンライン適応型異常検出のための新しいフレームワークを提案する。
実験結果は0.975を超える検出精度を示し、最先端のET-NETアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-06-18T15:11:44Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
我々は,Deep SVDDにおけるアクティブラーニングの2つの重要な課題,すなわちクエリ戦略と半教師付きラーニング手法に対処する。
まず、単に異常を識別するのではなく、適応境界に従って不確実なサンプルを選択する。
第2に、ラベル付き正規データと異常データの両方を効果的に組み込むために、一級分類モデルの訓練にノイズコントラスト推定を適用した。
論文 参考訳(メタデータ) (2023-09-18T03:56:45Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - $\text{A}^3$: Activation Anomaly Analysis [0.7734726150561088]
隠れアクティベーション値には,正常標本と異常標本の識別に有用な情報が含まれていることを示す。
我々のアプローチは、純粋にデータ駆動のエンドツーエンドモデルで3つのニューラルネットワークを組み合わせる。
異常ネットワークのおかげで、我々の手法は厳密な半教師付き設定でも機能する。
論文 参考訳(メタデータ) (2020-03-03T21:23:56Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
本稿では, ニューラルネットワークを逆向きに訓練し, 異常なサンプルをよりよく認識するRCGAN(Regularized Cycle Consistent Generative Adversarial Network)を提案する。
実世界のデータと合成データの両方に対する実験結果から,我々のモデルが過去の異常検出ベンチマークにおいて有意かつ一貫した改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-01-18T03:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。