論文の概要: ED-sKWS: Early-Decision Spiking Neural Networks for Rapid,and Energy-Efficient Keyword Spotting
- arxiv url: http://arxiv.org/abs/2406.12726v1
- Date: Fri, 14 Jun 2024 03:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:18:55.582869
- Title: ED-sKWS: Early-Decision Spiking Neural Networks for Rapid,and Energy-Efficient Keyword Spotting
- Title(参考訳): ED-sKWS:迅速かつエネルギー効率の良いキーワードスポッティングのための早期決定スパイクニューラルネットワーク
- Authors: Zeyang Song, Qianhui Liu, Qu Yang, Yizhou Peng, Haizhou Li,
- Abstract要約: キーワードスポッティング(KWS)は、高速でエネルギー効率の良い応答を必要とするエッジコンピューティングにおいて不可欠である。
本研究では,SNNに基づくKWSモデルであるED-sKWSを紹介する。
- 参考スコア(独自算出の注目度): 40.89417175292374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keyword Spotting (KWS) is essential in edge computing requiring rapid and energy-efficient responses. Spiking Neural Networks (SNNs) are well-suited for KWS for their efficiency and temporal capacity for speech. To further reduce the latency and energy consumption, this study introduces ED-sKWS, an SNN-based KWS model with an early-decision mechanism that can stop speech processing and output the result before the end of speech utterance. Furthermore, we introduce a Cumulative Temporal (CT) loss that can enhance prediction accuracy at both the intermediate and final timesteps. To evaluate early-decision performance, we present the SC-100 dataset including 100 speech commands with beginning and end timestamp annotation. Experiments on the Google Speech Commands v2 and our SC-100 datasets show that ED-sKWS maintains competitive accuracy with 61% timesteps and 52% energy consumption compared to SNN models without early-decision mechanism, ensuring rapid response and energy efficiency.
- Abstract(参考訳): キーワードスポッティング(KWS)は、高速でエネルギー効率の良い応答を必要とするエッジコンピューティングにおいて不可欠である。
スパイキングニューラルネットワーク(SNN)は、KWSの効率性と発話の時間的能力に適している。
そこで本研究では,SNNに基づくKWSモデルであるED-sKWSを導入する。
さらに,中間段階と最終段階の両方で予測精度を向上させるための累積時間損失(CT)を導入する。
早期判定性能を評価するため,開始時刻と終了時刻のアノテーションを付加した100の音声コマンドを含むSC-100データセットを提案する。
Google Speech Commands v2とSC-100データセットの実験では、ED-sKWSは早期判定機構のないSNNモデルと比較して61%のタイムステップと52%のエネルギー消費で競合精度を維持し、迅速な応答とエネルギー効率を保証している。
関連論文リスト
- sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
スパイキングニューラルネットワーク(SNN)は生物学的に妥当で、電力効率が高いことが知られている。
本稿では sVAD と呼ばれる新しい SNN ベースの音声活動検出モデルを提案する。
SincNetと1D畳み込みによる効果的な聴覚特徴表現を提供し、アテンション機構による雑音の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-09T02:55:44Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
スパイキングニューラルネットワーク(SNN)は、その生物学的忠実さとエネルギー効率のよいスパイク駆動操作を実行する能力のために、脳のような計算にかなりの注意を払っている。
ORRC(Residual Connection)を通じて大量の冗長情報を蓄積する新しいトレーニングパラダイムを提案する。
次に,SynA(SynA)モジュールを用いて冗長情報をフィルタリングし,背骨における特徴抽出を促進するとともに,ショートカットにおけるノイズや無駄な特徴の影響を抑える。
論文 参考訳(メタデータ) (2023-11-11T13:36:27Z) - Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers with Reliability Guarantees [36.14499894307206]
スパイキングニューラルネットワーク(SNN)は、内部イベント駆動型ニューラルネットワークを通じて時系列データを処理する。
本稿では,入力依存停止時に発生する決定に対して,信頼性を保証する新しい遅延適応型SNNベースの推論手法を提案する。
論文 参考訳(メタデータ) (2023-05-18T22:11:04Z) - TopSpark: A Timestep Optimization Methodology for Energy-Efficient
Spiking Neural Networks on Autonomous Mobile Agents [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパース計算と効率的なオンライン学習による低消費電力/エネルギー処理を提供する。
TopSparkは、適応タイムステップの削減を利用して、トレーニングと推論の両方でエネルギー効率の良いSNN処理を可能にする新しい手法である。
論文 参考訳(メタデータ) (2023-03-03T10:20:45Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Continual Spatio-Temporal Graph Convolutional Networks [87.86552250152872]
時空間グラフ畳み込みニューラルネットワークを連続推論ネットワークとして再構成する。
オンライン推論において、最大109倍の時間複雑性、26倍のハードウェアアクセラレーション、最大割り当てメモリの最大52%の削減を観測した。
論文 参考訳(メタデータ) (2022-03-21T14:23:18Z) - Robust Peak Detection for Holter ECGs by Self-Organized Operational
Neural Networks [12.773050144952593]
ディープ畳み込みニューラルネットワーク(CNN)はホルターモニタで最先端のパフォーマンスレベルを達成した。
本研究では,生成ニューロンを有する1次元自己組織型ONN(Self-ONNs)を提案する。
その結果、CPSCデータセットでは99.10%のF1スコア、99.79%の感度、98.42%の正の予測性が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-30T19:45:06Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
本稿では,全データ学習による音声強調のためのディープタイム遅延ニューラルネットワーク(TDNN)を提案する。
トレーニングデータを完全に活用するために,音声強調のための完全なデータ学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T06:32:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。