論文の概要: Beyond Visual Appearances: Privacy-sensitive Objects Identification via Hybrid Graph Reasoning
- arxiv url: http://arxiv.org/abs/2406.12736v1
- Date: Tue, 18 Jun 2024 15:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:09:06.920873
- Title: Beyond Visual Appearances: Privacy-sensitive Objects Identification via Hybrid Graph Reasoning
- Title(参考訳): 視覚的外観を超えて:ハイブリッドグラフ推論によるプライバシに敏感なオブジェクトの識別
- Authors: Zhuohang Jiang, Bingkui Tong, Xia Du, Ahmed Alhammadi, Jizhe Zhou,
- Abstract要約: POIの鍵は、オブジェクトのプライバシクラスをセッティングすることだ。
あるオブジェクトのプライバシクラスは、シーンコンテキストから派生します。
我々はPOIのためのPrivacyGuardフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.050631286347773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Privacy-sensitive Object Identification (POI) task allocates bounding boxes for privacy-sensitive objects in a scene. The key to POI is settling an object's privacy class (privacy-sensitive or non-privacy-sensitive). In contrast to conventional object classes which are determined by the visual appearance of an object, one object's privacy class is derived from the scene contexts and is subject to various implicit factors beyond its visual appearance. That is, visually similar objects may be totally opposite in their privacy classes. To explicitly derive the objects' privacy class from the scene contexts, in this paper, we interpret the POI task as a visual reasoning task aimed at the privacy of each object in the scene. Following this interpretation, we propose the PrivacyGuard framework for POI. PrivacyGuard contains three stages. i) Structuring: an unstructured image is first converted into a structured, heterogeneous scene graph that embeds rich scene contexts. ii) Data Augmentation: a contextual perturbation oversampling strategy is proposed to create slightly perturbed privacy-sensitive objects in a scene graph, thereby balancing the skewed distribution of privacy classes. iii) Hybrid Graph Generation & Reasoning: the balanced, heterogeneous scene graph is then transformed into a hybrid graph by endowing it with extra "node-node" and "edge-edge" homogeneous paths. These homogeneous paths allow direct message passing between nodes or edges, thereby accelerating reasoning and facilitating the capturing of subtle context changes. Based on this hybrid graph... **For the full abstract, see the original paper.**
- Abstract(参考訳): プライバシに敏感なオブジェクト識別(POI)タスクは、シーン内のプライバシに敏感なオブジェクトのバウンディングボックスを割り当てる。
POIの鍵は、オブジェクトのプライバシクラス(プライバシ感受性または非プライバシ感受性)をセッティングすることだ。
オブジェクトの視覚的外観によって決定される従来のオブジェクトクラスとは対照的に、あるオブジェクトのプライバシクラスはシーンコンテキストから派生し、視覚的外観を超えた様々な暗黙的要因を被る。
つまり、視覚的に類似したオブジェクトは、彼らのプライバシークラスでは完全に正反対かもしれない。
本稿では,シーンコンテキストからオブジェクトのプライバシクラスを明確に導出するために,シーン内の各オブジェクトのプライバシを目標とした視覚的推論タスクとしてPOIタスクを解釈する。
この解釈に従って,POIのためのPrivacyGuardフレームワークを提案する。
PrivacyGuardには3つのステージがある。
i) 構造化: 構造化されていない画像は、まず、リッチなシーンコンテキストを埋め込んだ構造化された異種シーングラフに変換される。
ii)データ強化:シーングラフにわずかに摂動されたプライバシに敏感なオブジェクトを作成するために,コンテキスト的摂動オーバーサンプリング戦略を提案する。
三 ハイブリッドグラフ生成及び推論:バランスの取れた異質なシーングラフは、余分な「ノード」と「エッジ」同質なパスを付与することによりハイブリッドグラフに変換される。
これらの均質なパスは、ノードまたはエッジ間の直接メッセージパッシングを可能にし、推論を加速し、微妙なコンテキスト変化のキャプチャを容易にする。
このハイブリッドグラフ...* 完全な抽象性については、オリジナルの論文を参照してください。
※※
関連論文リスト
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graphはオープンな3Dシーン理解のための新しいシーン表現である。
セマンティクスを記憶し、その形状に応じてオブジェクトの占有度を調節するアダプティブ・オクツリー構造を開発する。
論文 参考訳(メタデータ) (2024-11-25T10:14:10Z) - Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - In Defense of Lazy Visual Grounding for Open-Vocabulary Semantic Segmentation [50.79940712523551]
我々は,非教師対象マスク発見の2段階的アプローチである遅延視覚接地を行い,それに続いて物体接地を行う。
私たちのモデルは、追加のトレーニングは必要ありませんが、5つの公開データセットで優れたパフォーマンスを示します。
論文 参考訳(メタデータ) (2024-08-09T09:28:35Z) - SHAN: Object-Level Privacy Detection via Inference on Scene Heterogeneous Graph [5.050631286347773]
プライバシオブジェクト検出は、画像内のプライベートオブジェクトを正確に見つけることを目的としている。
既存の手法は、精度、一般化、解釈可能性の重大な欠陥に悩まされている。
本稿では、画像からシーン異質グラフを構成するモデルであるSHAN(Scene Heterogeneous Graph Attention Network)を提案する。
論文 参考訳(メタデータ) (2024-03-14T08:32:14Z) - Context Disentangling and Prototype Inheriting for Robust Visual
Grounding [56.63007386345772]
ビジュアルグラウンドディング(VG)は、与えられた言語クエリに基づいて、画像内の特定のターゲットを特定することを目的としている。
本稿では,両シーンを両シーンで処理する堅牢な視覚的グラウンド化のために,コンテキストの切り離しとプロトタイプを継承する新しいフレームワークを提案する。
本手法は両シナリオにおいて最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2023-12-19T09:03:53Z) - Human-interpretable and deep features for image privacy classification [32.253391125106674]
本稿では,画像のプライバシ分類に適した機能について論じるとともに,プライバシに特有かつ人間に解釈可能な8つの特徴を提案する。
これらの機能は、ディープラーニングモデルの性能を高め、それ自身で、より高次元の深い機能と比較して、プライバシ分類のためのイメージ表現を改善する。
論文 参考訳(メタデータ) (2023-10-30T14:39:43Z) - Privacy-Preserving Graph Embedding based on Local Differential Privacy [26.164722283887333]
ノードデータのプライバシを保護するために,PrivGEという新たなプライバシ保護グラフ埋め込みフレームワークを導入する。
具体的には,ノードデータを難読化するための LDP 機構を提案し,パーソナライズされた PageRank を近接指標としてノード表現を学習する。
いくつかの実世界のグラフデータセットの実験は、PrivGEがプライバシとユーティリティの最適なバランスを達成していることを示している。
論文 参考訳(メタデータ) (2023-10-17T08:06:08Z) - Grounding Scene Graphs on Natural Images via Visio-Lingual Message
Passing [17.63475613154152]
本稿では,シーングラフの特定の意味的関係制約に従うオブジェクトを協調的にグラウンド化するためのフレームワークを提案する。
シーングラフは、画像内のすべてのオブジェクトとその意味的関係を表現するための効率的で構造化された方法である。
論文 参考訳(メタデータ) (2022-11-03T16:46:46Z) - MOC-GAN: Mixing Objects and Captions to Generate Realistic Images [21.240099965546637]
より合理的な設定を導入し、オブジェクトやキャプションからリアルなイメージを生成します。
この設定では、オブジェクトはターゲットイメージにおける重要な役割を明示的に定義し、キャプションは、そのリッチな属性とコネクションを暗黙的に記述する。
2つのモードの入力を混合して現実的な画像を生成するMOC-GANを提案する。
論文 参考訳(メタデータ) (2021-06-06T14:04:07Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
シーングラフ生成(SGG)は、画像内のオブジェクトとそれらのペア関係を検出することを目的としている。
GPS-Netは、エッジ方向情報、ノード間の優先度の差、長期にわたる関係の分布という、SGGの3つの特性を網羅している。
GPS-Netは、VG、OI、VRDの3つの一般的なデータベース上での最先端のパフォーマンスを、さまざまな設定とメトリクスで大幅に向上させる。
論文 参考訳(メタデータ) (2020-03-29T07:22:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。