論文の概要: Unsupervised explainable activity prediction in competitive Nordic Walking from experimental data
- arxiv url: http://arxiv.org/abs/2406.12762v1
- Date: Tue, 18 Jun 2024 16:29:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:09:06.875301
- Title: Unsupervised explainable activity prediction in competitive Nordic Walking from experimental data
- Title(参考訳): 実験データを用いた北陸競歩における教師なし動作予測
- Authors: Silvia García-Méndez, Francisco de Arriba-Pérez, Francisco J. González-Castaño, Javier Vales-Alonso,
- Abstract要約: 本研究は,ノルディックウォーキングにおいて,スポーツ選手の活動に関する予測を自動説明し,正しい,正しく,不正な行為と不正行為を区別することに焦点を当てた。
提案したソリューションは、平均して100パーセント近いパフォーマンス指標を達成した。
- 参考スコア(独自算出の注目度): 6.817247544942709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) has found application in Human Activity Recognition (HAR) in competitive sports. To date, most Machine Learning (ML) approaches for HAR have relied on offline (batch) training, imposing higher computational and tagging burdens compared to online processing unsupervised approaches. Additionally, the decisions behind traditional ML predictors are opaque and require human interpretation. In this work, we apply an online processing unsupervised clustering approach based on low-cost wearable Inertial Measurement Units (IMUs). The outcomes generated by the system allow for the automatic expansion of limited tagging available (e.g., by referees) within those clusters, producing pertinent information for the explainable classification stage. Specifically, our work focuses on achieving automatic explainability for predictions related to athletes' activities, distinguishing between correct, incorrect, and cheating practices in Nordic Walking. The proposed solution achieved performance metrics of close to 100 % on average.
- Abstract(参考訳): 人工知能(AI)は、競争スポーツにおけるヒューマンアクティビティ認識(HAR)に応用されている。
これまで、HARの機械学習(ML)アプローチのほとんどは、オフライン(バッチ)トレーニングに依存しており、オンライン処理の教師なしアプローチよりも高い計算とタグ付けの負担を課している。
さらに、従来のML予測器の背後にある決定は不透明であり、人間の解釈を必要とする。
本研究では,低コストなウェアラブルIMU(Inertial Measurement Units)をベースとしたオンラインクラスタリング手法を提案する。
システムによって生成された結果は、これらのクラスタ内で利用可能な限定タグ(例えば、レフェリーによる)の自動拡張を可能にし、説明可能な分類段階の関連する情報を生成する。
具体的には,ノルディックウォーキングにおいて,スポーツ選手の活動に関する予測を自動説明し,正しい,間違って,不正な実践を区別することに焦点を当てた。
提案したソリューションは、平均して100パーセント近いパフォーマンス指標を達成した。
関連論文リスト
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts [104.9871176044644]
Masked Autoencoder (MAE) は,モデル事前学習において有望な結果が得られる自己教師型学習手法である。
我々は、新しいMAEベースの事前学習パラダイム、Mixture of Cluster-conditional Experts (MoCE)を提案する。
MoCEは、クラスタ条件ゲートを使用して、各専門家にセマンティックなイメージのみをトレーニングする。
論文 参考訳(メタデータ) (2024-02-08T03:46:32Z) - Estimating Fr\'echet bounds for validating programmatic weak supervision [50.13475056199486]
我々は、ある変数が連続的に評価される(おそらく高次元の)分布クラス上のFr'echeの境界を推定する手法を開発する。
プログラム弱監督(PWS)を訓練した機械学習(ML)モデルの性能を評価することで,アルゴリズムの有用性を実証する。
論文 参考訳(メタデータ) (2023-12-07T07:15:11Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
アクティブ推論(アクティブ推論、英: Active Inference、ACI)とは、脳が知覚情報を常に予測し評価し、長期的サプライズを減らす方法を記述する神経科学の概念である。
我々は,ACIエージェントが要求を満たすことなく,最適化問題を迅速かつ追跡的に解決できたことを示す。
論文 参考訳(メタデータ) (2023-11-17T16:03:04Z) - Federated Learning for Early Dropout Prediction on Healthy Ageing
Applications [0.0]
我々は、プライバシの懸念を最小限に抑え、個々のデータを転送することなく分散トレーニングを可能にするフェデレーション機械学習(FML)アプローチを提案する。
その結果,FMLでトレーニングしたモデルの予測精度は,データ選択とクラス不均衡ハンドリング技術により有意に向上した。
論文 参考訳(メタデータ) (2023-09-08T13:17:06Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Learning Operators with Coupled Attention [9.715465024071333]
本稿では,近年の注目機構の成功を動機とした,新しい演算子学習手法であるLOCAを提案する。
我々のアーキテクチャでは、入力関数は有限個の特徴にマッピングされ、その特徴は出力クエリの場所に依存する注意重みで平均化される。
これらの注意重みを積分変換と組み合わせることで、LOCAは目標出力関数の相関関係を明示的に学習することができる。
論文 参考訳(メタデータ) (2022-01-04T08:22:03Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Leveraging Rationales to Improve Human Task Performance [15.785125079811902]
計算システムの性能が人間のユーザを上回ることを考えれば、人間のパフォーマンスを改善するために説明可能なAI能力を活用することができるだろうか?
本稿では,ユーティリティベースの計算手法の合理性を自動生成するRationale-Generating Algorithmを紹介する。
以上の結果から,本手法は人事性能の統計的改善につながる有理性を生み出すことが示唆された。
論文 参考訳(メタデータ) (2020-02-11T04:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。