論文の概要: INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2307.08131v4
- Date: Tue, 10 Sep 2024 15:51:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 23:57:26.378704
- Title: INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks
- Title(参考訳): INFLECT-DGNN:動的グラフニューラルネットワークによるインフルエンサー予測
- Authors: Elena Tiukhova, Emiliano Penaloza, María Óskarsdóttir, Bart Baesens, Monique Snoeck, Cristián Bravo,
- Abstract要約: INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNN) and Recurrent Neural Networks (RNN)について述べる。
モデル予測に基づく意思決定を支援する,新たな利益主導型フレームワークを提案する。
我々の研究は、参照とターゲットマーケティングの分野に重大な影響を及ぼす。
- 参考スコア(独自算出の注目度): 4.677411878315618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging network information for predictive modeling has become widespread in many domains. Within the realm of referral and targeted marketing, influencer detection stands out as an area that could greatly benefit from the incorporation of dynamic network representation due to the continuous evolution of customer-brand relationships. In this paper, we present INFLECT-DGNN, a new method for profit-driven INFLuencer prEdiCTion with Dynamic Graph Neural Networks that innovatively combines Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) with weighted loss functions, synthetic minority oversampling adapted to graph data, and a carefully crafted rolling-window strategy. We introduce a novel profit-driven framework that supports decision-making based on model predictions. To test the framework, we use a unique corporate dataset with diverse networks, capturing the customer interactions across three cities with different socioeconomic and demographic characteristics. Our results show how using RNNs to encode temporal attributes alongside GNNs significantly improves predictive performance, while the profit-driven framework determines the optimal classification threshold for profit maximization. We compare the results of different models to demonstrate the importance of capturing network representation, temporal dependencies, and using a profit-driven evaluation. Our research has significant implications for the fields of referral and targeted marketing, expanding the technical use of deep graph learning within corporate environments.
- Abstract(参考訳): 予測モデリングのためのネットワーク情報を活用することは、多くの領域で広まっている。
参照とターゲットマーケティングの領域において、インフルエンサー検出は、顧客ブランド関係の継続的な進化による動的ネットワーク表現の組み入れから大きな恩恵を受けることができる分野として際立っている。
In this paper, INFLECT-DGNN, a new method for profit-driven INFLuencer prEdiCTion with Dynamic Graph Neural Networks that innovatively combines Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) with weighted loss function, adopted to graph data, and a carefully crafted rolling-window strategy。
モデル予測に基づく意思決定を支援する,新たな利益主導型フレームワークを提案する。
このフレームワークをテストするために、さまざまなネットワークを持つユニークな企業データセットを使用し、異なる社会経済特性と人口統計特性を持つ3つの都市における顧客インタラクションをキャプチャする。
この結果から,GNNと共に時間特性を符号化するためにRNNを用いることで予測性能を大幅に向上する一方,利益主導型フレームワークは利益最大化のための最適分類しきい値を決定する。
我々は,ネットワーク表現,時間的依存,利益主導評価を用いた重要度を示すために,異なるモデルの結果を比較した。
本研究は,企業環境におけるディープグラフ学習の技術的利用を拡大し,レファラルおよびターゲットマーケティングの分野に重要な意味を持つ。
関連論文リスト
- Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
グラフニューラルネットワーク(GNN)は、ネットワークのようなデータから学習する上で優れるが、解釈性に欠けることが多い。
本稿では,GKAN(Graph Kolmogorov-Arnold Network)を提案する。
論文 参考訳(メタデータ) (2024-06-26T13:54:59Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
IM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
論文 参考訳(メタデータ) (2024-06-18T17:54:33Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - LinkSAGE: Optimizing Job Matching Using Graph Neural Networks [12.088731514483104]
本稿では、グラフニューラルネットワーク(GNN)を大規模パーソナライズされたジョブマッチングシステムに統合する革新的なフレームワークであるLinkSAGEを紹介する。
当社のアプローチは、数十億のノードとエッジを持つ、業界最大の、そして最も複雑な、新しい求人市場グラフに乗じています。
LinkSAGEの重要なイノベーションは、そのトレーニングと提供の方法論である。これは、不均一で進化するグラフ上の帰納的グラフ学習とエンコーダ-デコーダGNNモデルとを効果的に組み合わせている。
論文 参考訳(メタデータ) (2024-02-20T23:49:25Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - Graph Neural Bandits [49.85090929163639]
グラフニューラルネットワーク(GNN)によって強化されたユーザ間の協調性を生かしたグラフニューラルバンド(GNB)というフレームワークを提案する。
提案手法を改良するために,推定ユーザグラフ上の別々のGNNモデルを用いて,エクスプロイトと適応探索を行う。
論文 参考訳(メタデータ) (2023-08-21T15:57:57Z) - ChatGPT Informed Graph Neural Network for Stock Movement Prediction [8.889701868315717]
グラフニューラルネットワーク(GNN)を強化するためにChatGPTのグラフ推論機能を活用する新しいフレームワークを提案する。
筆者らのフレームワークは,テキストデータから進化するネットワーク構造を十分に抽出し,これらのネットワークをグラフニューラルネットワークに組み込んで,その後の予測作業を行う。
論文 参考訳(メタデータ) (2023-05-28T21:11:59Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。