Influence Maximization via Graph Neural Bandits
- URL: http://arxiv.org/abs/2406.12835v1
- Date: Tue, 18 Jun 2024 17:54:33 GMT
- Title: Influence Maximization via Graph Neural Bandits
- Authors: Yuting Feng, Vincent Y. F. Tan, Bogdan Cautis,
- Abstract summary: We set the IM problem in a multi-round diffusion campaign, aiming to maximize the number of distinct users that are influenced.
We propose the framework IM-GNB (Influence Maximization with Graph Neural Bandits), where we provide an estimate of the users' probabilities of being influenced.
- Score: 54.45552721334886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a ubiquitous scenario in the study of Influence Maximization (IM), in which there is limited knowledge about the topology of the diffusion network. We set the IM problem in a multi-round diffusion campaign, aiming to maximize the number of distinct users that are influenced. Leveraging the capability of bandit algorithms to effectively balance the objectives of exploration and exploitation, as well as the expressivity of neural networks, our study explores the application of neural bandit algorithms to the IM problem. We propose the framework IM-GNB (Influence Maximization with Graph Neural Bandits), where we provide an estimate of the users' probabilities of being influenced by influencers (also known as diffusion seeds). This initial estimate forms the basis for constructing both an exploitation graph and an exploration one. Subsequently, IM-GNB handles the exploration-exploitation tradeoff, by selecting seed nodes in real-time using Graph Convolutional Networks (GCN), in which the pre-estimated graphs are employed to refine the influencers' estimated rewards in each contextual setting. Through extensive experiments on two large real-world datasets, we demonstrate the effectiveness of IM-GNB compared with other baseline methods, significantly improving the spread outcome of such diffusion campaigns, when the underlying network is unknown.
Related papers
- Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
We propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment.
We use attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through graph neural networks.
Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
arXiv Detail & Related papers (2024-08-21T10:02:05Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Graph Neural Bandits [49.85090929163639]
We propose a framework named Graph Neural Bandits (GNB) to leverage the collaborative nature among users empowered by graph neural networks (GNNs)
To refine the recommendation strategy, we utilize separate GNN-based models on estimated user graphs for exploitation and adaptive exploration.
arXiv Detail & Related papers (2023-08-21T15:57:57Z) - INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks [4.677411878315618]
We present INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs)
We introduce a novel profit-driven framework that supports decision-making based on model predictions.
Our research has significant implications for the fields of referral and targeted marketing.
arXiv Detail & Related papers (2023-07-16T19:04:48Z) - Deep Graph Representation Learning and Optimization for Influence
Maximization [10.90744025490539]
In Influence (IM) is formulated as selecting a set of initial users from a social network to maximize the expected number of influenced users.
We propose a novel framework DeepIM to generatively characterize the latent representation of seed sets.
We also design a novel objective function to infer optimal seed sets under flexible node-centrality-based budget constraints.
arXiv Detail & Related papers (2023-05-01T15:45:01Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - GraMeR: Graph Meta Reinforcement Learning for Multi-Objective Influence
Maximization [1.7311053765541482]
Influence (IM) is a problem of identifying a subset of nodes called the seed nodes in a network (graph)
IM has numerous applications such as viral marketing, epidemic control, sensor placement and other network-related tasks.
We develop a generic IM problem as a Markov decision process that handles both intrinsic and influence activations.
arXiv Detail & Related papers (2022-05-30T03:48:51Z) - Contextual Bandits for Advertising Campaigns: A Diffusion-Model
Independent Approach (Extended Version) [73.59962178534361]
We study an influence problem in which little is assumed to be known about the diffusion network or about the model that determines how information may propagate.
In this setting, an explore-exploit approach could be used to learn the key underlying diffusion parameters, while running the campaign.
We describe and compare two methods of contextual multi-armed bandits, with upper-confidence bounds on the remaining potential of influencers.
arXiv Detail & Related papers (2022-01-13T22:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.