INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2307.08131v4
- Date: Tue, 10 Sep 2024 15:51:39 GMT
- Title: INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks
- Authors: Elena Tiukhova, Emiliano Penaloza, María Óskarsdóttir, Bart Baesens, Monique Snoeck, Cristián Bravo,
- Abstract summary: We present INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs)
We introduce a novel profit-driven framework that supports decision-making based on model predictions.
Our research has significant implications for the fields of referral and targeted marketing.
- Score: 4.677411878315618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging network information for predictive modeling has become widespread in many domains. Within the realm of referral and targeted marketing, influencer detection stands out as an area that could greatly benefit from the incorporation of dynamic network representation due to the continuous evolution of customer-brand relationships. In this paper, we present INFLECT-DGNN, a new method for profit-driven INFLuencer prEdiCTion with Dynamic Graph Neural Networks that innovatively combines Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) with weighted loss functions, synthetic minority oversampling adapted to graph data, and a carefully crafted rolling-window strategy. We introduce a novel profit-driven framework that supports decision-making based on model predictions. To test the framework, we use a unique corporate dataset with diverse networks, capturing the customer interactions across three cities with different socioeconomic and demographic characteristics. Our results show how using RNNs to encode temporal attributes alongside GNNs significantly improves predictive performance, while the profit-driven framework determines the optimal classification threshold for profit maximization. We compare the results of different models to demonstrate the importance of capturing network representation, temporal dependencies, and using a profit-driven evaluation. Our research has significant implications for the fields of referral and targeted marketing, expanding the technical use of deep graph learning within corporate environments.
Related papers
- Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability.
We propose the Graph Kolmogorov-Arnold Network (GKAN) to enhance both accuracy and interpretability.
arXiv Detail & Related papers (2024-06-26T13:54:59Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
We set the IM problem in a multi-round diffusion campaign, aiming to maximize the number of distinct users that are influenced.
We propose the framework IM-GNB (Influence Maximization with Graph Neural Bandits), where we provide an estimate of the users' probabilities of being influenced.
arXiv Detail & Related papers (2024-06-18T17:54:33Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - LinkSAGE: Optimizing Job Matching Using Graph Neural Networks [12.088731514483104]
We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems.
Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges.
A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model.
arXiv Detail & Related papers (2024-02-20T23:49:25Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Graph Neural Bandits [49.85090929163639]
We propose a framework named Graph Neural Bandits (GNB) to leverage the collaborative nature among users empowered by graph neural networks (GNNs)
To refine the recommendation strategy, we utilize separate GNN-based models on estimated user graphs for exploitation and adaptive exploration.
arXiv Detail & Related papers (2023-08-21T15:57:57Z) - ChatGPT Informed Graph Neural Network for Stock Movement Prediction [8.889701868315717]
We introduce a novel framework that leverages ChatGPT's graph inference capabilities to enhance Graph Neural Networks (GNN)
Our framework adeptly extracts evolving network structures from textual data, and incorporates these networks into graph neural networks for subsequent predictive tasks.
arXiv Detail & Related papers (2023-05-28T21:11:59Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.