Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame
Kernel Direct Numerical Simulation Data
- URL: http://arxiv.org/abs/2210.16206v1
- Date: Fri, 28 Oct 2022 15:27:46 GMT
- Title: Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame
Kernel Direct Numerical Simulation Data
- Authors: Mathis Bode and Michael Gauding and Dominik Goeb and Tobias
Falkenstein and Heinz Pitsch
- Abstract summary: This work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion.
The resulting model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully turbulent premixed flame kernel.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models for finite-rate-chemistry in underresolved flows still pose one of the
main challenges for predictive simulations of complex configurations. The
problem gets even more challenging if turbulence is involved. This work
advances the recently developed PIESRGAN modeling approach to turbulent
premixed combustion. For that, the physical information processed by the
network and considered in the loss function are adjusted, the training process
is smoothed, and especially effects from density changes are considered. The
resulting model provides good results for a priori and a posteriori tests on
direct numerical simulation data of a fully turbulent premixed flame kernel.
The limits of the modeling approach are discussed. Finally, the model is
employed to compute further realizations of the premixed flame kernel, which
are analyzed with a scale-sensitive framework regarding their cycle-to-cycle
variations. The work shows that the data-driven PIESRGAN subfilter model can
very accurately reproduce direct numerical simulation data on much coarser
meshes, which is hardly possible with classical subfilter models, and enables
studying statistical processes more efficiently due to the smaller computing
cost.
Related papers
- Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations.
We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
arXiv Detail & Related papers (2024-09-23T02:02:02Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Finite-Rate-Chemistry Flows and Predicting Lean
Premixed Gas Turbine Combustors [0.0]
This work advances the recently introduced PIESRGAN to reactive finite-rate-chemistry flows.
The modified PIESRGAN-based model gives good agreement in a priori and a posteriori tests in a laminar lean premixed combustion setup.
arXiv Detail & Related papers (2022-10-28T15:48:26Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Interpretable Data-driven Methods for Subgrid-scale Closure in LES for
Transcritical LOX/GCH4 Combustion [0.0]
The objective of this study is to assess stress models from conventional physics-driven approaches and an interpretable machine learning algorithm.
The accuracy of the random-forest regressor decreased when physics-based constraints are applied to the feature set.
arXiv Detail & Related papers (2021-03-11T00:54:50Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.