論文の概要: Meent: Differentiable Electromagnetic Simulator for Machine Learning
- arxiv url: http://arxiv.org/abs/2406.12904v1
- Date: Tue, 11 Jun 2024 10:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 13:15:04.307098
- Title: Meent: Differentiable Electromagnetic Simulator for Machine Learning
- Title(参考訳): Meent: 機械学習のための微分可能な電磁シミュレータ
- Authors: Yongha Kim, Anthony W. Jung, Sanmun Kim, Kevin Octavian, Doyoung Heo, Chaejin Park, Jeongmin Shin, Sunghyun Nam, Chanhyung Park, Juho Park, Sangjun Han, Jinmyoung Lee, Seolho Kim, Min Seok Jang, Chan Y. Park,
- Abstract要約: 電磁法(EM)シミュレーションは、サブ波長スケール構造を持つデバイスを解析・設計する上で重要な役割を担っている。
Meentは、厳密な結合波解析(RCWA)を利用するEMシミュレーションソフトウェアである。
1) ニューラル演算子のトレーニングのためのデータセット生成,2) ナノフォトニックデバイス最適化の強化学習環境として機能する,3) 勾配に基づく逆問題に対する解を提供する,の3つの応用を提案する。
- 参考スコア(独自算出の注目度): 0.6902278820907753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electromagnetic (EM) simulation plays a crucial role in analyzing and designing devices with sub-wavelength scale structures such as solar cells, semiconductor devices, image sensors, future displays and integrated photonic devices. Specifically, optics problems such as estimating semiconductor device structures and designing nanophotonic devices provide intriguing research topics with far-reaching real world impact. Traditional algorithms for such tasks require iteratively refining parameters through simulations, which often yield sub-optimal results due to the high computational cost of both the algorithms and EM simulations. Machine learning (ML) emerged as a promising candidate to mitigate these challenges, and optics research community has increasingly adopted ML algorithms to obtain results surpassing classical methods across various tasks. To foster a synergistic collaboration between the optics and ML communities, it is essential to have an EM simulation software that is user-friendly for both research communities. To this end, we present Meent, an EM simulation software that employs rigorous coupled-wave analysis (RCWA). Developed in Python and equipped with automatic differentiation (AD) capabilities, Meent serves as a versatile platform for integrating ML into optics research and vice versa. To demonstrate its utility as a research platform, we present three applications of Meent: 1) generating a dataset for training neural operator, 2) serving as an environment for the reinforcement learning of nanophotonic device optimization, and 3) providing a solution for inverse problems with gradient-based optimizers. These applications highlight Meent's potential to advance both EM simulation and ML methodologies. The code is available at https://github.com/kc-ml2/meent with the MIT license to promote the cross-polinations of ideas among academic researchers and industry practitioners.
- Abstract(参考訳): 電磁法(EM)シミュレーションは、太陽電池、半導体デバイス、イメージセンサー、将来のディスプレイ、集積フォトニックデバイスなどのサブ波長スケール構造を持つデバイスを解析・設計する上で重要な役割を担っている。
具体的には、半導体デバイス構造の推定やナノフォトニクスデバイスの設計といった光学的問題によって、遠く離れた現実世界への影響に関する興味深い研究トピックが提供される。
このようなタスクの伝統的なアルゴリズムは、アルゴリズムとEMシミュレーションの両方の計算コストが高いため、しばしば準最適結果をもたらすシミュレーションを通じてパラメータを反復的に精錬する必要がある。
機械学習(ML)は、これらの課題を軽減するための有望な候補として現れ、光学研究コミュニティは、さまざまなタスクにわたる古典的手法を超える結果を得るために、MLアルゴリズムをますます採用している。
光と機械学習のコミュニティ間の相乗的コラボレーションを促進するためには、両方の研究コミュニティに親しみやすいEMシミュレーションソフトウェアを持つことが不可欠である。
この目的のために,厳密な結合波解析(RCWA)を用いたEMシミュレーションソフトウェアであるMeentを提案する。
Pythonで開発され、自動微分(AD)機能を備えたMeentは、光学研究にMLを統合するための汎用プラットフォームとして機能し、その逆も可能である。
研究プラットフォームとしての実用性を実証するため、Meentの3つの応用を提示する。
1) 神経オペレーターの訓練用データセットの作成
2)ナノフォトニックデバイス最適化の強化学習環境として機能し、
3)勾配型最適化器を用いた逆問題に対する解を提供する。
これらの応用は、EMシミュレーションとML方法論の両方を前進させるMeentの可能性を浮き彫りにする。
コードはMITライセンスのhttps://github.com/kc-ml2/meentで公開されている。
関連論文リスト
- Analysis of Hardware Synthesis Strategies for Machine Learning in Collider Trigger and Data Acquisition [0.0]
機械学習は、インテリジェントなデータ処理と取得のために検出器エレクトロニクスに実装することができる。
衝突時のリアルタイムMLの実装には、ソフトウェアベースのアプローチでは実現不可能な非常に低いレイテンシが必要です。
フィールドプログラマブルゲートアレイにおけるコライダートリガーアルゴリズムの適用に着目し,ニューラルネットワークの推論効率の解析を行った。
論文 参考訳(メタデータ) (2024-11-18T15:59:30Z) - PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices [14.671301859745453]
既存のSOTAアプローチであるNeurOLightは、現実世界の複雑なフォトニックデバイスに対する高忠実度フィールドの予測に苦労している。
長距離モデリング能力の強いクロス軸分解型PACE演算子を提案する。
人間の学習に触発されて、非常に難しいケースのシミュレーションタスクを、段階的に簡単な2つのタスクに分解する。
論文 参考訳(メタデータ) (2024-11-05T22:03:14Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
従来のメッシュベースのアプローチに代わる魅力的な代替手段として、メッシュフリーシミュレーション手法が登場している。
機械学習(ML)とFraunhoferのMESHFREEソフトウェアを組み合わせた研究の概要について概説する。
本稿では,MESHFREEシミュレーションデータに能動的学習,回帰木を用いたML最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T15:29:59Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Microscopy is All You Need [0.0]
我々は、機械学習手法を開発するための有望な経路は、ドメイン固有のデプロイ可能なアルゴリズムの経路であると主張している。
これは基礎的な物理研究の恩恵を受け、ロボット工学や製造といったより複雑な自律システムのテストベッドとして機能する。
論文 参考訳(メタデータ) (2022-10-12T18:41:40Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
集積フォトニクスは優れた位相安定性を提供し、半導体産業によって提供される大規模な製造性に依存することができる。
このような光回路に基づく新しいデバイスは、機械学習アプリケーションにおいて高速でエネルギー効率の高い計算を約束する。
線形光ネットワークの転送行列を再構成する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-01T16:04:22Z) - Integrating Machine Learning with HPC-driven Simulations for Enhanced
Student Learning [0.0]
シミュレーション出力を生成するためのHPC駆動型シミュレーションとMLサロゲート手法の両方をサポートするWebアプリケーションを開発した。
授業内フィードバックと調査を通じて評価した結果,ML強化ツールは動的かつ応答性のあるシミュレーション環境を提供することがわかった。
論文 参考訳(メタデータ) (2020-08-24T22:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。