論文の概要: RMF: A Risk Measurement Framework for Machine Learning Models
- arxiv url: http://arxiv.org/abs/2406.12929v1
- Date: Sat, 15 Jun 2024 13:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:47:45.599825
- Title: RMF: A Risk Measurement Framework for Machine Learning Models
- Title(参考訳): RMF:機械学習モデルのためのリスク計測フレームワーク
- Authors: Jan Schröder, Jakub Breier,
- Abstract要約: 機械学習(ML)をコンポーネントとして使用するシステムのセキュリティを測定することは重要である。
本稿では、MLの分野、特に自動運転車のセキュリティに焦点を当てる。
- 参考スコア(独自算出の注目度): 2.9833943723592764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) models are used in many safety- and security-critical applications nowadays. It is therefore important to measure the security of a system that uses ML as a component. This paper focuses on the field of ML, particularly the security of autonomous vehicles. For this purpose, a technical framework will be described, implemented, and evaluated in a case study. Based on ISO/IEC 27004:2016, risk indicators are utilized to measure and evaluate the extent of damage and the effort required by an attacker. It is not possible, however, to determine a single risk value that represents the attacker's effort. Therefore, four different values must be interpreted individually.
- Abstract(参考訳): 機械学習(ML)モデルは、今日では多くの安全およびセキュリティクリティカルなアプリケーションで使われている。
したがって、MLをコンポーネントとして使用するシステムのセキュリティを測定することが重要である。
本稿では、MLの分野、特に自動運転車のセキュリティに焦点を当てる。
この目的のために、技術的なフレームワークをケーススタディで記述し、実装し、評価する。
ISO/IEC 27004:2016に基づいて、攻撃者が必要とする損害の程度と労力を計測し、評価するためにリスク指標が使用される。
しかし、攻撃者の努力を表す単一のリスク値を決定することは不可能である。
したがって、4つの異なる値を個別に解釈する必要がある。
関連論文リスト
- Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
大型言語モデル (LLM) は、ドローンのようなロボットシステムを制御するためにますます使われている。
現実世界のアプリケーションに物理的な脅威や害をもたらすリスクは、まだ解明されていない。
我々は,ドローンの物理的安全性リスクを,(1)目標脅威,(2)目標脅威,(3)インフラ攻撃,(4)規制違反の4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2024-11-04T17:41:25Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases [0.0]
本稿では,大規模言語モデルにおけるバイアスと公平性リスクを評価するための実践者のための技術ガイドを提供する。
この作業の主な貢献は、特定のLLMユースケースで使用するメトリクスを決定するための決定フレームワークである。
論文 参考訳(メタデータ) (2024-07-15T16:04:44Z) - MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models [39.97454990633856]
本稿では,MLLMの多次元安全性評価スイートであるMLLMGuardを紹介する。
バイリンガル画像テキスト評価データセット、推論ユーティリティ、軽量評価器が含まれている。
13種類の先進モデルに対する評価結果は,MLLMが安全かつ責任を負うことができるまでには,まだかなりの道のりを歩んでいることを示唆している。
論文 参考訳(メタデータ) (2024-06-11T13:41:33Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z) - Reliability Assessment and Safety Arguments for Machine Learning
Components in Assuring Learning-Enabled Autonomous Systems [19.65793237440738]
LES(Learning-Enabled Systems)のための総合保証フレームワークを提案する。
次に、ML分類器のための新しいモデルに依存しない信頼性評価モデル(RAM)を提案する。
モデル仮定と、我々のRAMが発見したML信頼性を評価するための固有の課題について論じる。
論文 参考訳(メタデータ) (2021-11-30T14:39:22Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Risk Management Framework for Machine Learning Security [7.678455181587705]
機械学習モデルに対する敵意攻撃は、学界と産業の両方で非常に研究されているトピックとなっている。
本稿では,機械学習モデルに依存する組織に対して,リスク管理プロセスを導くための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-12-09T06:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。