Skin Cancer Images Classification using Transfer Learning Techniques
- URL: http://arxiv.org/abs/2406.12954v1
- Date: Tue, 18 Jun 2024 15:48:20 GMT
- Title: Skin Cancer Images Classification using Transfer Learning Techniques
- Authors: Md Sirajul Islam, Sanjeev Panta,
- Abstract summary: Early diagnosis of skin cancer at a benign stage is critical to reducing cancer mortality.
Previous studies have addressed the problem of skin cancer diagnosis using various deep learning and transfer learning models.
In this work, we applied five different pre-trained transfer learning approaches for binary classification of skin cancer detection at benign and malignant stages.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin cancer is one of the most common and deadliest types of cancer. Early diagnosis of skin cancer at a benign stage is critical to reducing cancer mortality. To detect skin cancer at an earlier stage an automated system is compulsory that can save the life of many patients. Many previous studies have addressed the problem of skin cancer diagnosis using various deep learning and transfer learning models. However, existing literature has limitations in its accuracy and time-consuming procedure. In this work, we applied five different pre-trained transfer learning approaches for binary classification of skin cancer detection at benign and malignant stages. To increase the accuracy of these models we fine-tune different layers and activation functions. We used a publicly available ISIC dataset to evaluate transfer learning approaches. For model stability, data augmentation techniques are applied to improve the randomness of the input dataset. These approaches are evaluated using different hyperparameters such as batch sizes, epochs, and optimizers. The experimental results show that the ResNet-50 model provides an accuracy of 0.935, F1-score of 0.86, and precision of 0.94.
Related papers
- An Integrated Deep Learning Model for Skin Cancer Detection Using Hybrid Feature Fusion Technique [2.621434923709917]
Skin cancer is a serious and potentially fatal disease caused by DNA damage.
In this study, we present a hybrid framework based on Deep Learning (DL) that achieves precise classification of skin lesions.
We achieve a 92.27% detection accuracy rate, 92.33% sensitivity, 92.22% specificity, 90.81% precision, and 91.57% F1-score.
arXiv Detail & Related papers (2024-10-18T14:19:13Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
We present Virchow, a foundation model for computational pathology.
Virchow is a vision transformer model with 632 million parameters trained on 1.5 million hematoxylin and eosin stained whole slide images.
arXiv Detail & Related papers (2023-09-14T15:09:35Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors.
The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue.
arXiv Detail & Related papers (2022-12-30T12:27:27Z) - Improving Precancerous Case Characterization via Transformer-based
Ensemble Learning [31.891340667123124]
The application of natural language processing to cancer pathology reports has been focused on detecting cancer cases.
Improving the characterization of precancerous adenomas assists in developing diagnostic tests for early cancer detection and prevention.
Our results demonstrated the potential of using NLP to leverage real-world health record data to facilitate the development of diagnostic tests for early cancer prevention.
arXiv Detail & Related papers (2022-12-10T00:06:28Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
Melanoma is the most malignant skin tumor and usually cancerates from normal moles.
We propose a new melanoma classification model based on EffNet and Resnet.
Our model not only uses images within the same patient but also consider patient-level contextual information for better cancer prediction.
arXiv Detail & Related papers (2022-04-21T14:46:55Z) - New pyramidal hybrid textural and deep features based automatic skin
cancer classification model: Ensemble DarkNet and textural feature extractor [1.4502611532302039]
This research interests to overcome automatic skin cancer detection problem.
An automatic multilevel textural and deep features-based model is presented.
The chosen top 1000 features are classified using the 10-fold cross-validation technique.
arXiv Detail & Related papers (2022-03-28T20:53:09Z) - EBHI:A New Enteroscope Biopsy Histopathological H&E Image Dataset for
Image Classification Evaluation [29.162527503224364]
Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients.
New publicly available Enteroscope Biopsy histopathology enteroscope biopsy dataset (EBHI) is published in this paper.
Traditional machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.
arXiv Detail & Related papers (2022-02-17T09:53:02Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.