論文の概要: Weighted Sum of Segmented Correlation: An Efficient Method for Spectra Matching in Hyperspectral Images
- arxiv url: http://arxiv.org/abs/2406.13006v1
- Date: Tue, 18 Jun 2024 18:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:28:02.761995
- Title: Weighted Sum of Segmented Correlation: An Efficient Method for Spectra Matching in Hyperspectral Images
- Title(参考訳): 重み付き相関の重み付き和:ハイパースペクトル画像におけるスペクトルマッチングの効率的な方法
- Authors: Sampriti Soor, Priyanka Kumari, B. S. Daya Sagar, Amba Shetty,
- Abstract要約: 本研究では,ライブラリの様々なセグメントとテストスペクトル間の相関指標を算出する重み付き相関法について紹介する。
この手法の有効性は、地球と火星の両面のハイパースペクトル画像における鉱物の同定に評価されている。
- 参考スコア(独自算出の注目度): 3.454872059813283
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Matching a target spectrum with known spectra in a spectral library is a common method for material identification in hyperspectral imaging research. Hyperspectral spectra exhibit precise absorption features across different wavelength segments, and the unique shapes and positions of these absorptions create distinct spectral signatures for each material, aiding in their identification. Therefore, only the specific positions can be considered for material identification. This study introduces the Weighted Sum of Segmented Correlation method, which calculates correlation indices between various segments of a library and a test spectrum, and derives a matching index, favoring positive correlations and penalizing negative correlations using assigned weights. The effectiveness of this approach is evaluated for mineral identification in hyperspectral images from both Earth and Martian surfaces.
- Abstract(参考訳): スペクトルライブラリーにおける対象スペクトルと既知のスペクトルとのマッチングは、ハイパースペクトルイメージング研究における材料同定の一般的な方法である。
ハイパースペクトルスペクトルは、異なる波長領域にわたって正確な吸収特性を示し、これらの吸収の特異な形状と位置は、それぞれの物質に対して異なるスペクトルシグネチャを生じさせ、それらの識別を助けている。
したがって、具体的位置のみを物的識別とみなすことができる。
そこで本研究では,ライブラリの様々なセグメントとテストスペクトルの相関指標を算出し,正の相関を優先し,負の相関を重み付けして負の相関をペナライズする重み付き相関法を提案する。
この手法の有効性は、地球と火星の両面のハイパースペクトル画像における鉱物の同定に評価されている。
関連論文リスト
- Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Spectral Unmixing of Hyperspectral Images Based on Block Sparse
Structure [1.491109220586182]
本稿では,ブロックスパース構造とスパースベイズ学習戦略に基づくハイパースペクトル画像(HSI)のスペクトルアンミックス手法を提案する。
論文 参考訳(メタデータ) (2022-04-10T09:37:41Z) - A spectral-spatial fusion anomaly detection method for hyperspectral
imagery [7.155465756606866]
ハイパースペクトル画像に対してスペクトル融合異常検出法(SSFAD)を提案する。
新しい検出器は、空間領域におけるパッチ画像の局所的な類似性空間的特徴を抽出するように設計されている。
論文 参考訳(メタデータ) (2022-02-24T03:54:48Z) - Gaussian Process Regression for Absorption Spectra Analysis of Molecular
Dimers [68.8204255655161]
本稿では、ガウス過程回帰(GPR)から数値計算のパラメータを選択する機械学習技術に基づくアプローチについて議論する。
このアプローチは最適パラメータ集合に素早く収束するだけでなく、完全なパラメータ空間に関する情報を提供する。
実際、GPRは量子化学法を用いてこれらのパラメータの直接計算と一致した信頼性の高い結果を与える。
論文 参考訳(メタデータ) (2021-12-14T17:46:45Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
ハイパースペクトル画像(HSI)処理の1つの重要な課題は、スペクトル空間的特徴の抽出である。
M-GSP特徴抽出に基づくHSIセグメンテーションへのいくつかのアプローチを提案する。
HSI処理とスペクトル空間情報抽出におけるM-GSPの強度を実験的に検証した。
論文 参考訳(メタデータ) (2021-11-29T23:28:18Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
本研究では,HARPS-N線速度スペクトルから高精度の太陽スペクトルを抽出するニューラルネットワークオートエンコーダ手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T12:54:48Z) - Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images [20.703976519242094]
スペクトル変動を明示的に抽出するスペクトル変動拡張スパース混合モデル(SVASU)を提案する。
スペクトル変動ライブラリーと固有スペクトルライブラリーはいずれもIn-situ観測画像から構築されている。
合成, 実世界の両方のデータセットに対する実験結果から, スペクトル変動による拡張分解は未混合性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2021-10-19T05:25:30Z) - Feature visualization of Raman spectrum analysis with deep convolutional
neural network [0.0]
本稿では,Ramanスペクトル解析にディープ畳み込みニューラルネットワークを用いた認識・特徴可視化手法を示す。
この方法は、まず単純なローレンツスペクトルに対して検討され、その後、医薬品化合物および数値混合アミノ酸のスペクトルに適用された。
論文 参考訳(メタデータ) (2020-07-27T08:15:38Z) - Spatial-Spectral Manifold Embedding of Hyperspectral Data [43.479889860715275]
本稿では,空間情報とスペクトル情報を同時に考慮した新しいハイパースペクトル埋め込み手法を提案する。
空間スペクトル多様体埋め込み(SSME)は、パッチベースの方法で空間情報とスペクトル情報を共同でモデル化する。
SSMEは、スペクトルシグネチャ間の類似度測定によって得られた隣接行列を用いてスペクトル埋め込みを学習するだけでなく、ハイパースペクトルシーンにおける対象画素の空間近傍をモデル化する。
論文 参考訳(メタデータ) (2020-07-17T05:40:27Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
Rb気相セル磁気センサを用いてゼロ磁場で検出された1量子および複数量子相関$J$-spectroscopyを示す。
ゼロフィールドでは、エタノールのスペクトルは炭素イソトポマーの混合物として現れ、相関スペクトルは2つの複合スペクトルを分離するのに有用である。
論文 参考訳(メタデータ) (2020-04-09T10:02:45Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。