論文の概要: A machine learning pipeline for automated insect monitoring
- arxiv url: http://arxiv.org/abs/2406.13031v1
- Date: Tue, 18 Jun 2024 19:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:18:18.516138
- Title: A machine learning pipeline for automated insect monitoring
- Title(参考訳): 自動昆虫監視のための機械学習パイプライン
- Authors: Aditya Jain, Fagner Cunha, Michael Bunsen, Léonard Pasi, Anna Viklund, Maxim Larrivée, David Rolnick,
- Abstract要約: カメラトラップは、これまでは地上の脊椎動物をモニタリングするために用いられていました。
われわれは、カメラトラップによるマウスの自動監視のための、完全なオープンソースの機械学習ベースのソフトウェアパイプラインについて説明する。
- 参考スコア(独自算出の注目度): 17.034158815607128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change and other anthropogenic factors have led to a catastrophic decline in insects, endangering both biodiversity and the ecosystem services on which human society depends. Data on insect abundance, however, remains woefully inadequate. Camera traps, conventionally used for monitoring terrestrial vertebrates, are now being modified for insects, especially moths. We describe a complete, open-source machine learning-based software pipeline for automated monitoring of moths via camera traps, including object detection, moth/non-moth classification, fine-grained identification of moth species, and tracking individuals. We believe that our tools, which are already in use across three continents, represent the future of massively scalable data collection in entomology.
- Abstract(参考訳): 気候変動やその他の人為的要因は、昆虫の壊滅的な減少をもたらし、生物多様性と人間の社会が依存する生態系サービスの両方を危険にさらしている。
しかし、昆虫の豊富さに関するデータは、いまだに不十分である。
カメラトラップは、これまでは地上の脊椎動物をモニタリングするために用いられていました。
我々は、オブジェクト検出、モト/非モト分類、モト種のきめ細かい識別、個人追跡を含む、カメラトラップによるモトの自動監視のための、完全でオープンソースの機械学習ベースのソフトウェアパイプラインについて説明する。
すでに3つの大陸で使われている私たちのツールは、エンコロジーにおける大規模でスケーラブルなデータ収集の未来を表していると考えています。
関連論文リスト
- Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
昆虫は世界の生物多様性の半分を占めるが、世界の昆虫の多くは姿を消している。
この危機にもかかわらず、昆虫の多様性と豊かさに関するデータはいまだに不十分である。
昆虫認識のための大規模な機械学習ベンチマークを初めて提供します。
論文 参考訳(メタデータ) (2024-06-18T09:57:02Z) - Multisensor Data Fusion for Automatized Insect Monitoring (KInsecta) [32.57872751877726]
本稿では,昆虫の分類にAIを用いたデータ融合を用いたマルチセンサ手法を提案する。
このシステムは低コストのセットアップとして設計されており、カメラモジュールと光ウィングビートセンサーで構成されている。
7種の種でセットされた、非常にバランスの取れない小さなデータセットの最初のテストは、種分類に有望な結果を示した。
論文 参考訳(メタデータ) (2024-04-29T08:46:43Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Automated Visual Monitoring of Nocturnal Insects with Light-based Camera
Traps [9.274371635733836]
我々は、中央ヨーロッパで撮影された2つの夜行性昆虫、特にハダカメムシの亜種として、夜行性昆虫のデータセットを提示する。
1つのデータセットであるEU-Mothsデータセットは、市民科学者によって手動で取得され、200種の種アノテーションを含んでいる。
第2のデータセットは、95晩に撮影された27,000枚以上の画像で構成されている。
論文 参考訳(メタデータ) (2023-07-28T09:31:36Z) - Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect
Localization and Species Classification [10.423464288613275]
本稿では,マウススキャナーが捉えた画像を分析するためのディープラーニングパイプラインを提案する。
本研究はまず寄生虫検出装置を用いて個体を局在させ,その後に検出された昆虫の種類を決定する。
我々の検出器は平均精度99.01%に達し、分類器は画像の切り抜きにおいて精度93.13%の精度で200種を識別する。
論文 参考訳(メタデータ) (2023-07-28T09:22:09Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNetは、侵入した種を識別し、きめ細かい昆虫種を識別し、挑戦的な背景において効果的に働く。
また、不確実な場合には予測を控え、シームレスな人間の介入を助長し、実用的で信頼できるツールにもなれる。
論文 参考訳(メタデータ) (2023-06-04T23:56:53Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
本研究では,商用ドローンで収集した空中画像を用いて,水鳥の正確な検出,数え,監視に使用できる深層学習パイプラインを提案する。
畳み込み型ニューラルネットワークを用いた物体検出装置を用いて,テキサス沿岸の植民地性営巣島でよく見られる16種類の水鳥を検出できることを示す。
論文 参考訳(メタデータ) (2022-10-10T17:37:56Z) - Florida Wildlife Camera Trap Dataset [48.99466876948454]
フロリダ州南西部の2つの異なる場所から収集された野生生物カメラトラップ分類データセットについて紹介する。
データセットは104,495枚の画像からなり、視覚的に類似した種、様々な照明条件、スキュードクラス分布、絶滅危惧種のサンプルを含む。
論文 参考訳(メタデータ) (2021-06-23T18:53:15Z) - Perspectives on individual animal identification from biology and
computer vision [58.81800919492064]
計算機科学者と生物学者の両方に利用可能なツールの概要を提供するコンピュータビジョン識別技術の最近の進歩を概観する。
動物識別プロジェクトを始めるための勧告を提示し、現在の限界を説明し、将来どのように対処されるかを提案する。
論文 参考訳(メタデータ) (2021-02-28T16:50:09Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。