論文の概要: Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2406.13050v1
- Date: Tue, 18 Jun 2024 20:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:08:09.771093
- Title: Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation
- Title(参考訳): Think-then-Act: 二重角評価再検索型世代
- Authors: Yige Shen, Hao Jiang, Hua Qu, Jihong Zhao,
- Abstract要約: 大型言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
二重角評価による検索拡張生成フレームワーク textitThink-then-Act を提案する。
- 参考スコア(独自算出の注目度): 3.2134014920850364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their impressive capabilities, large language models (LLMs) often face challenges such as temporal misalignment and generating hallucinatory content. Enhancing LLMs with retrieval mechanisms to fetch relevant information from external sources offers a promising solution. Inspired by the proverb "Think twice before you act," we propose a dual-angle evaluated retrieval-augmented generation framework \textit{Think-then-Act}. Unlike previous approaches that indiscriminately rewrite queries or perform retrieval regardless of necessity, or generate temporary responses before deciding on additional retrieval, which increases model generation costs, our framework employs a two-phase process: (i) assessing the input query for clarity and completeness to determine if rewriting is necessary; and (ii) evaluating the model's capability to answer the query and deciding if additional retrieval is needed. Experimental results on five datasets show that the \textit{Think-then-Act} framework significantly improves performance. Our framework demonstrates notable improvements in accuracy and efficiency compared to existing baselines and performs well in both English and non-English contexts. Ablation studies validate the optimal model confidence threshold, highlighting the resource optimization benefits of our approach.
- Abstract(参考訳): 印象的な能力にもかかわらず、大きな言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
LLMを検索機構で強化し、外部ソースから関連情報を取得することは、有望な解決策である。
動作前に2回シンクする」という証明に着想を得て、検索強化生成フレームワークである「textit{Think-then-Act}」を提案する。
問合せを無差別に書き直したり、必要によらず検索を行ったり、追加検索を決定する前に一時的な応答を生成して、モデル生成コストを増大させる従来のアプローチとは異なり、我々のフレームワークは2段階のプロセスを採用している。
一 書き直しが必要かどうかを判断するための明快さ及び完全性のために入力クエリを評価すること。
2) クエリに応答するモデルの能力を評価し、追加の検索が必要かどうかを判断する。
5つのデータセットの実験結果から, textit{Think-then-Act} フレームワークは性能を著しく向上することが示された。
本フレームワークは,既存のベースラインと比較して精度と効率の顕著な向上を示し,英語と非英語の両文脈でよく機能する。
アブレーション研究は、最適モデルの信頼性閾値を検証し、我々のアプローチのリソース最適化の利点を強調します。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
モデルが類似した結果を返すことを目的とした,パラフレーズ付きテキスト画像検索の課題について考察する。
我々は、大きなテキストコーパスで事前訓練された言語モデルから始まる二重エンコーダモデルを訓練する。
CLIPやOpenCLIPのような公開デュアルエンコーダモデルと比較して、最高の適応戦略で訓練されたモデルは、パラフレーズクエリのランク付けの類似性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-06T06:30:17Z) - Enhancing Retrieval Processes for Language Generation with Augmented
Queries [0.0]
本研究は,実事実に基づく正確な応答をモデルに誘導するRAG(Retrieval-Augmented Generation)を通じてこの問題に対処することに焦点を当てる。
スケーラビリティの問題を克服するために、BERTやOrca2といった洗練された言語モデルとユーザクエリを結びつけることを検討する。
実験結果から,RAGによる初期言語モデルの性能向上が示唆された。
論文 参考訳(メタデータ) (2024-02-06T13:19:53Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
PRFに基づくクエリ拡張にテキスト生成モデルを効果的に統合する新しい手法を提案する。
提案手法では,初期クエリと擬似関連フィードバックの両方を条件としたニューラルテキスト生成モデルを用いて,拡張クエリ項を生成する。
2つのベンチマークデータセットを用いて,情報検索タスクに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2021-08-13T01:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。