論文の概要: Enhancing Retrieval Processes for Language Generation with Augmented
Queries
- arxiv url: http://arxiv.org/abs/2402.16874v1
- Date: Tue, 6 Feb 2024 13:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 19:20:57.630615
- Title: Enhancing Retrieval Processes for Language Generation with Augmented
Queries
- Title(参考訳): 拡張クエリによる言語生成のための検索プロセスの強化
- Authors: Julien Pierre Edmond Ghali, Kosuke Shima, Koichi Moriyama, Atsuko
Mutoh, Nobuhiro Inuzuka
- Abstract要約: 本研究は,実事実に基づく正確な応答をモデルに誘導するRAG(Retrieval-Augmented Generation)を通じてこの問題に対処することに焦点を当てる。
スケーラビリティの問題を克服するために、BERTやOrca2といった洗練された言語モデルとユーザクエリを結びつけることを検討する。
実験結果から,RAGによる初期言語モデルの性能向上が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly changing world of smart technology, searching for documents
has become more challenging due to the rise of advanced language models. These
models sometimes face difficulties, like providing inaccurate information,
commonly known as "hallucination." This research focuses on addressing this
issue through Retrieval-Augmented Generation (RAG), a technique that guides
models to give accurate responses based on real facts. To overcome scalability
issues, the study explores connecting user queries with sophisticated language
models such as BERT and Orca2, using an innovative query optimization process.
The study unfolds in three scenarios: first, without RAG, second, without
additional assistance, and finally, with extra help. Choosing the compact yet
efficient Orca2 7B model demonstrates a smart use of computing resources. The
empirical results indicate a significant improvement in the initial language
model's performance under RAG, particularly when assisted with prompts
augmenters. Consistency in document retrieval across different encodings
highlights the effectiveness of using language model-generated queries. The
introduction of UMAP for BERT further simplifies document retrieval while
maintaining strong results.
- Abstract(参考訳): スマートテクノロジーの急速な変化の中で、高度な言語モデルの台頭により、文書の検索がますます困難になっている。
これらのモデルは、しばしば「幻覚」として知られる不正確な情報を提供するような困難に直面している。
本研究は,実事実に基づく正確な応答をモデルに誘導するRAG(Retrieval-Augmented Generation)を通じてこの問題に対処することに焦点を当てる。
スケーラビリティの問題を克服するために、この研究は、革新的なクエリ最適化プロセスを使用して、bertやorca2といった高度な言語モデルとユーザクエリを接続することを検討している。
この研究は、3つのシナリオに展開されている。まずはRAGなしで、次に追加の助けなしで、最後に追加の助けなしで。
コンパクトだが効率的なOrca2 7Bモデルを選択することは、コンピューティングリソースのスマートな利用を実証する。
実験結果から,RAGによる初期言語モデルの性能向上,特にプロンプト強化時の性能向上が示唆された。
異なるエンコーディング間の文書検索の一貫性は、言語モデル生成クエリの使用の有効性を強調する。
UMAP for BERTの導入により、強力な結果を維持しながら文書検索がさらに簡単になる。
関連論文リスト
- GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
本稿では,テキストとビデオ間の固有情報不均衡に対処するため,新しいデータ中心型アプローチであるGeneralized Query Expansion (GQE)を提案する。
ビデオをショートクリップにアダプティブに分割し、ゼロショットキャプションを採用することで、GQEはトレーニングデータセットを総合的なシーン記述で強化する。
GQEは、MSR-VTT、MSVD、SMDC、VATEXなど、いくつかのベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-14T01:24:09Z) - Improving Retrieval in Sponsored Search by Leveraging Query Context Signals [6.152499434499752]
本稿では,クエリをリッチなコンテキスト信号で拡張することで,クエリ理解を強化する手法を提案する。
我々は、Web検索のタイトルとスニペットを使って、現実世界の情報にクエリを接地し、GPT-4を使ってクエリの書き直しと説明を生成する。
我々の文脈認識アプローチは文脈自由モデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-07-19T14:28:53Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
大型言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
二重角評価による検索拡張生成フレームワーク textitThink-then-Act を提案する。
論文 参考訳(メタデータ) (2024-06-18T20:51:34Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
本稿では,反復的な検索・生成協調フレームワークを提案する。
シングルホップQAとマルチホップQAタスクを含む4つの質問応答データセットの実験を行った。
論文 参考訳(メタデータ) (2023-10-08T12:50:57Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
提案手法はまず,大言語モデル (LLM) をプロンプトすることで擬似文書を生成する。
query2docは、アドホックIRデータセットでBM25のパフォーマンスを3%から15%向上させる。
また,本手法は,ドメイン内およびドメイン外の両方において,最先端の高密度検索に有効である。
論文 参考訳(メタデータ) (2023-03-14T07:27:30Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
PRFに基づくクエリ拡張にテキスト生成モデルを効果的に統合する新しい手法を提案する。
提案手法では,初期クエリと擬似関連フィードバックの両方を条件としたニューラルテキスト生成モデルを用いて,拡張クエリ項を生成する。
2つのベンチマークデータセットを用いて,情報検索タスクに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2021-08-13T01:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。