Learned Compression of Encoding Distributions
- URL: http://arxiv.org/abs/2406.13059v1
- Date: Tue, 18 Jun 2024 21:05:51 GMT
- Title: Learned Compression of Encoding Distributions
- Authors: Mateen Ulhaq, Ivan V. Bajić,
- Abstract summary: entropy bottleneck is a common component used in many learned compression models.
We propose a method that adapts the encoding distribution to match the latent data distribution for a specific input.
Our method achieves a Bjontegaard-Delta (BD)-rate gain of -7.10% on the Kodak test dataset.
- Score: 1.4732811715354455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The entropy bottleneck introduced by Ball\'e et al. is a common component used in many learned compression models. It encodes a transformed latent representation using a static distribution whose parameters are learned during training. However, the actual distribution of the latent data may vary wildly across different inputs. The static distribution attempts to encompass all possible input distributions, thus fitting none of them particularly well. This unfortunate phenomenon, sometimes known as the amortization gap, results in suboptimal compression. To address this issue, we propose a method that dynamically adapts the encoding distribution to match the latent data distribution for a specific input. First, our model estimates a better encoding distribution for a given input. This distribution is then compressed and transmitted as an additional side-information bitstream. Finally, the decoder reconstructs the encoding distribution and uses it to decompress the corresponding latent data. Our method achieves a Bj{\o}ntegaard-Delta (BD)-rate gain of -7.10% on the Kodak test dataset when applied to the standard fully-factorized architecture. Furthermore, considering computational complexity, the transform used by our method is an order of magnitude cheaper in terms of Multiply-Accumulate (MAC) operations compared to related side-information methods such as the scale hyperprior.
Related papers
- Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction.
Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
arXiv Detail & Related papers (2024-04-07T10:57:54Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - Symmetric Equilibrium Learning of VAEs [56.56929742714685]
We view variational autoencoders (VAEs) as decoder-encoder pairs, which map distributions in the data space to distributions in the latent space and vice versa.
We propose a Nash equilibrium learning approach, which is symmetric with respect to the encoder and decoder and allows learning VAEs in situations where both the data and the latent distributions are accessible only by sampling.
arXiv Detail & Related papers (2023-07-19T10:27:34Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
Variational Auto-Encoders (VAEs) face challenges with the quality of generated images, often presenting noticeable blurriness.
This issue stems from the unrealistic assumption that approximates the conditional data distribution, $p(textbfx | textbfz)$, as an isotropic Gaussian.
We illustrate how one can extract a latent space from a pre-existing diffusion model by optimizing an encoder to maximize the marginal data log-likelihood.
arXiv Detail & Related papers (2023-04-24T14:44:47Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - End-to-end optimized image compression with competition of prior
distributions [29.585370305561582]
We propose a compression scheme that uses a single convolutional autoencoder and multiple learned prior distributions.
Our method offers rate-distortion performance comparable to that obtained with a predicted parametrized prior.
arXiv Detail & Related papers (2021-11-17T15:04:01Z) - Neural Distributed Source Coding [59.630059301226474]
We present a framework for lossy DSC that is agnostic to the correlation structure and can scale to high dimensions.
We evaluate our method on multiple datasets and show that our method can handle complex correlations and state-of-the-art PSNR.
arXiv Detail & Related papers (2021-06-05T04:50:43Z) - Adapting deep generative approaches for getting synthetic data with
realistic marginal distributions [0.0]
Deep generative models, such as variational autoencoders (VAEs), are a popular approach for creating such synthetic datasets from original data.
We propose a novel method, pre-transformation variational autoencoders (PTVAEs), to specifically address bimodal and skewed data.
The results show that the PTVAE approach can outperform others in both bimodal and skewed data generation.
arXiv Detail & Related papers (2021-05-14T15:47:20Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
Existing generative-hashing methods mostly assume a factorized form for the posterior distribution.
We propose to employ the distribution of Boltzmann machine as the retrievalal posterior.
We show that by effectively modeling correlations among different bits within a hash code, our model can achieve significant performance gains.
arXiv Detail & Related papers (2020-06-16T01:23:39Z) - Variational Hyper-Encoding Networks [62.74164588885455]
We propose a framework called HyperVAE for encoding distributions of neural network parameters theta.
We predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(theta)
arXiv Detail & Related papers (2020-05-18T06:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.