Simulation-informed deep learning for enhanced SWOT observations of fine-scale ocean dynamics
- URL: http://arxiv.org/abs/2503.21303v1
- Date: Thu, 27 Mar 2025 09:29:33 GMT
- Title: Simulation-informed deep learning for enhanced SWOT observations of fine-scale ocean dynamics
- Authors: Eugenio Cutolo, Carlos Granero-Belinchon, Ptashanna Thiraux, Jinbo Wang, Ronan Fablet,
- Abstract summary: Ocean processes at fine scales are crucial yet difficult to observe accurately due to limitations in satellite and in-situ measurements.<n>Current methods struggle with noisy data or require extensive supervised training, limiting their effectiveness on real-world observations.<n>We introduce SIMPGEN, an unsupervised adversarial learning framework combining real SWOT observations with simulated reference data.
- Score: 4.575524892161048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oceanic processes at fine scales are crucial yet difficult to observe accurately due to limitations in satellite and in-situ measurements. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution Sea Surface Height (SSH) data, though noise patterns often obscure fine scale structures. Current methods struggle with noisy data or require extensive supervised training, limiting their effectiveness on real-world observations. We introduce SIMPGEN (Simulation-Informed Metric and Prior for Generative Ensemble Networks), an unsupervised adversarial learning framework combining real SWOT observations with simulated reference data. SIMPGEN leverages wavelet-informed neural metrics to distinguish noisy from clean fields, guiding realistic SSH reconstructions. Applied to SWOT data, SIMPGEN effectively removes noise, preserving fine-scale features better than existing neural methods. This robust, unsupervised approach not only improves SWOT SSH data interpretation but also demonstrates strong potential for broader oceanographic applications, including data assimilation and super-resolution.
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - Triply Laplacian Scale Mixture Modeling for Seismic Data Noise Suppression [51.87076090814921]
Sparsity-based tensor recovery methods have shown great potential in suppressing seismic data noise.<n>We propose a novel triply Laplacian scale mixture (TLSM) approach for seismic data noise suppression.
arXiv Detail & Related papers (2025-02-20T08:28:01Z) - Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges [0.46873264197900916]
The predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness.
This paper studies sonar-based perception task models, such as classification, object detection, segmentation, and SLAM.
It systematizes sonar-based state-of-the-art datasets, simulators, and robustness methods such as neural network verification, out-of-distribution, and adversarial attacks.
arXiv Detail & Related papers (2024-12-16T15:03:08Z) - Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion [33.025831091005784]
Large-scale Sea Surface Temperature (SST) monitoring relies on satellite infrared radiation detection.
Cloud cover presents a major challenge, creating extensive observational gaps.
We employ deep neural networks to reconstruct cloud-covered portions of satellite imagery.
arXiv Detail & Related papers (2024-12-04T15:49:49Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations [0.0]
We train an Attention-Based-Decoder deep learning network (textscabed) on this data.
We evaluate ABED reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information.
Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.
arXiv Detail & Related papers (2023-10-11T16:09:09Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
Deep denoising models require extensive real-world training data, which is challenging to acquire.<n>We propose a novel Realistic Noise Synthesis Diffusor (RNSD) method using diffusion models to address these challenges.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks [9.541153192112194]
We propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals.
We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST)
arXiv Detail & Related papers (2020-05-03T14:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.