Exact Community Recovery (under Side Information): Optimality of Spectral Algorithms
- URL: http://arxiv.org/abs/2406.13075v1
- Date: Tue, 18 Jun 2024 21:48:59 GMT
- Title: Exact Community Recovery (under Side Information): Optimality of Spectral Algorithms
- Authors: Julia Gaudio, Nirmit Joshi,
- Abstract summary: We study the problem of exact community recovery in general, two-community block models.
We provide a unified analysis of the effect of side information on the information-theoretic limits of exact recovery.
- Score: 1.4732811715354452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we study the problem of exact community recovery in general, two-community block models considering both Bernoulli and Gaussian matrix models, capturing the Stochastic Block Model, submatrix localization, and $\mathbb{Z}_2$-synchronization as special cases. We also study the settings where $side$ $information$ about community assignment labels is available, modeled as passing the true labels through a noisy channel: either the binary erasure channel (where some community labels are known while others are erased) or the binary symmetric channel (where some labels are flipped). We provide a unified analysis of the effect of side information on the information-theoretic limits of exact recovery, generalizing prior works and extending to new settings. Additionally, we design a simple but optimal spectral algorithm that incorporates side information (when present) along with the eigenvectors of the matrix observation. Using the powerful tool of entrywise eigenvector analysis [Abbe, Fan, Wang, Zhong 2020], we show that our spectral algorithm can mimic the so called $genie$-$aided$ $estimators$, where the $i^{\mathrm{th}}$ genie-aided estimator optimally computes the estimate of the $i^{\mathrm{th}}$ label, when all remaining labels are revealed by a genie. This perspective provides a unified understanding of the optimality of spectral algorithms for various exact recovery problems in a recent line of work.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Compressive Recovery of Sparse Precision Matrices [5.557600489035657]
We consider the problem of learning a graph modeling the statistical relations of the $d$ variables from a dataset with $n$ samples $X in mathbbRn times d$.
We show that it is possible to estimate it from a sketch of size $m=Omegaleft((d+2k)log(d)right)$ where $k$ is the maximal number of edges of the underlying graph.
We investigate the possibility of achieving practical recovery with an iterative algorithm based on the graphical lasso, viewed as a specific denoiser.
arXiv Detail & Related papers (2023-11-08T13:29:08Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Community Detection in the Hypergraph SBM: Exact Recovery Given the
Similarity Matrix [1.74048653626208]
We study the performance of algorithms which operate on the $similarity$matrix $W$, where $W_ij$ reports the number of hyperedges containing both $i$ and $j$.
We design a simple and highly efficient spectral algorithm with nearly linear runtime and show that it achieves the min-bisection threshold.
arXiv Detail & Related papers (2022-08-23T15:22:05Z) - Spectral Algorithms Optimally Recover (Censored) Planted Dense Subgraphs [6.760971938794954]
We study spectral algorithms for the planted dense subgraph problem (PDS) and a censored variant (CPDS) of PDS, where the edge statuses are missing at random.
We show that a simple spectral algorithm based on the top two eigenvectors of the adjacency matrix can recover $Sstar$ up to the information theoretic threshold.
For the CDPS model, we obtain the information theoretic limit for the recovery problem, and further show that a spectral algorithm based on a special matrix called the signed adjacency matrix recovers $Sstar$ up to the information theoretic threshold
arXiv Detail & Related papers (2022-03-22T16:23:43Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
We study the problem of estimating the value of a known smooth function $f$ at an unknown point $boldsymbolmu in mathbbRn$, where each component $mu_i$ can be sampled via a noisy oracle.
We design an instance-adaptive algorithm that learns to sample according to the importance of each coordinate, and with probability at least $1-delta$ returns an $epsilon$ accurate estimate of $f(boldsymbolmu)$.
arXiv Detail & Related papers (2022-03-18T18:50:52Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
We show that learning $ktimes k$, rank-$r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ samples.
We propose an algorithm that uses $cal O(frackrepsilon2log2fracepsilon)$ samples, a number linear in the high dimension, and nearly linear in the matrices, typically low, rank proofs.
arXiv Detail & Related papers (2020-09-30T19:10:32Z) - Analytic Characterization of the Hessian in Shallow ReLU Models: A Tale
of Symmetry [9.695960412426672]
We analytically characterize the Hessian at various families of spurious minima.
In particular, we prove that for $dge k$ standard Gaussian inputs: (a) of the $dk$ eigenvalues of the Hessian, $dk - O(d)$ concentrate near zero, (b) $Omega(d)$ of the eigenvalues grow linearly with $k$.
arXiv Detail & Related papers (2020-08-04T20:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.