論文の概要: A Generic Method for Fine-grained Category Discovery in Natural Language Texts
- arxiv url: http://arxiv.org/abs/2406.13103v2
- Date: Thu, 06 Feb 2025 15:57:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 17:44:07.851258
- Title: A Generic Method for Fine-grained Category Discovery in Natural Language Texts
- Title(参考訳): 自然言語テキストにおける微粒なカテゴリー発見のためのジェネリック手法
- Authors: Chang Tian, Matthew B. Blaschko, Wenpeng Yin, Mingzhe Xing, Yinliang Yue, Marie-Francine Moens,
- Abstract要約: そこで本研究では,新たな目的関数によって導かれる意味的類似テキストの微細なクラスタをうまく検出する手法を提案する。
この方法は対数空間における意味的類似性を利用してユークリッド空間のサンプル分布を導く。
また,リアルタイムアプリケーションをサポートするセントロイド推論機構を提案する。
- 参考スコア(独自算出の注目度): 38.297873969795546
- License:
- Abstract: Fine-grained category discovery using only coarse-grained supervision is a cost-effective yet challenging task. Previous training methods focus on aligning query samples with positive samples and distancing them from negatives. They often neglect intra-category and inter-category semantic similarities of fine-grained categories when navigating sample distributions in the embedding space. Furthermore, some evaluation techniques that rely on pre-collected test samples are inadequate for real-time applications. To address these shortcomings, we introduce a method that successfully detects fine-grained clusters of semantically similar texts guided by a novel objective function. The method uses semantic similarities in a logarithmic space to guide sample distributions in the Euclidean space and to form distinct clusters that represent fine-grained categories. We also propose a centroid inference mechanism to support real-time applications. The efficacy of the method is both theoretically justified and empirically confirmed on three benchmark tasks. The proposed objective function is integrated in multiple contrastive learning based neural models. Its results surpass existing state-of-the-art approaches in terms of Accuracy, Adjusted Rand Index and Normalized Mutual Information of the detected fine-grained categories. Code and data will be available at Code and data are publicly available at https://github.com/changtianluckyforever/F-grained-STAR.
- Abstract(参考訳): 粗粒度のみを用いた細粒度カテゴリー発見は費用対効果があるが難しい課題である。
従来のトレーニング手法では、クエリサンプルを正のサンプルと整合させ、負のサンプルと区別することに重点を置いていた。
彼らはしばしば、埋め込み空間におけるサンプル分布をナビゲートする際に、細粒度カテゴリのカテゴリ内およびカテゴリ間セマンティックな類似性を無視する。
さらに、事前コンパイルされたテストサンプルに依存するいくつかの評価手法は、リアルタイムアプリケーションには不十分である。
これらの欠点に対処するため,本研究では,新たな目的関数によって導かれる意味的類似テキストの細粒度クラスタを正常に検出する手法を提案する。
この手法は対数空間における意味的類似性を利用してユークリッド空間のサンプル分布を誘導し、微細な圏を表す異なるクラスタを形成する。
また,リアルタイムアプリケーションをサポートするセントロイド推論機構を提案する。
この手法の有効性は、3つのベンチマークタスクで理論的に正当化され、実証的に確認される。
提案する目的関数は、複数のコントラスト学習に基づくニューラルモデルに統合される。
その結果, 検出された細粒度カテゴリの精度, 適応乱数指数, 正規化相互情報の観点から, 既存の最先端手法を上回る結果を得た。
コードとデータはCodeで公開され、データはhttps://github.com/changtianluckyforever/F-grained-STARで公開されている。
関連論文リスト
- A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
本研究の目的は,ボックス,ポイント,テキストなど,さまざまなプロンプト型で示されるオブジェクトの密度マップを生成することができる包括的プロンプトベースのカウントフレームワークを確立することである。
本モデルは,クラスに依存しない顕著なデータセットに優れ,データセット間の適応タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T12:05:44Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
そこで本研究では,KNN(Kk$-nearest-neighbor)に基づく拡張分類検索手法を提案する。
分類と検索の共有表現がパフォーマンスを損なうことや,トレーニングの不安定化につながることが判明した。
本手法は,幅広い分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-03-23T06:33:06Z) - Open World Classification with Adaptive Negative Samples [89.2422451410507]
オープンワールド分類は、自然言語処理における重要な実践的妥当性と影響を伴う課題である。
そこで本研究では, アンダーライン適応型アンダーラインアンプ (ANS) に基づいて, 学習段階における効果的な合成オープンカテゴリサンプルを生成する手法を提案する。
ANSは最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-03-09T21:12:46Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [22.92968284023414]
本稿では,2つの確率分布間の重なり関数に対する計算容易な上限を提案する。
提案した境界は、一級分類と領域シフト解析においてその値を示す。
私たちの研究は、重複ベースのメトリクスの応用を拡大する大きな可能性を示しています。
論文 参考訳(メタデータ) (2022-12-16T20:02:03Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
本稿では,XCon(Expert-Contrastive Learning)と呼ばれる新しい手法を提案する。
細粒度データセットを用いた実験では,従来の最適手法よりも明らかに改善された性能を示し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2022-08-03T08:03:12Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。