Photon Statistics from Non-Hermitian Floquet Theory: High Harmonic Generation and Above-Threshold Ionization Spectra Detected via IR Detectors
- URL: http://arxiv.org/abs/2406.13109v2
- Date: Tue, 17 Sep 2024 15:22:01 GMT
- Title: Photon Statistics from Non-Hermitian Floquet Theory: High Harmonic Generation and Above-Threshold Ionization Spectra Detected via IR Detectors
- Authors: Nimrod Moiseyev,
- Abstract summary: A unified mechanism governs the three distinct measurements of high harmonic generation spectra (HGS), above-threshold ionization (ATI), and IR photon number distribution.
The HGS and ATI spectra, as detected by XUV detectors, can be obtained by monitoring the fluctuations of the infrared absorbed photons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although it seems that obtaining quantum properties of light from classical calculations is a self-contradictory claim, it is shown here that a unified mechanism governs the three distinct measurements of high harmonic generation spectra (HGS), above-threshold ionization (ATI), and IR photon number distribution, none of which require the quantization of the electromagnetic field. Here, the conditions that enable the calculations of HGS and ATI spectra for atoms interacting with high-intensity laser fields from photon statistics are first derived. Through the non-Hermitian theoretical simulation, the regimes where there is correspondence between the HHG and ATI spectra and annihilated pump photons (with post-selection) are identified. Consequently, the HGS and ATI spectra, as detected by XUV detectors, can be obtained by monitoring the fluctuations of the infrared absorbed photons.
Related papers
- Spontaneously induced emitter-radiation entanglement due to confinement to photonic band gap [0.0]
Study of spontaneously induced nonclassicality as a result of the interaction of an ensemble of two-level emitters embedded onto crystal structure embodying photonic band gap (PBG)
The state of the coupled system is found to exhibit entanglement and nonclassical intensity correlation attributed to the confinement, where intensity of the emitted radiation and degree of entanglement are enhanced near the edge.
arXiv Detail & Related papers (2024-10-22T09:26:56Z) - Deep Learning-Based Classification of Gamma Photon Interactions in
Room-Temperature Semiconductor Radiation Detectors [0.0]
CdZnTeSe (CZTS) semiconductor detectors have a high overlap of detected energies between Compton and photoelectric events.
Our work lays solid foundation for developing next-generation high energy gamma-rays detectors for better biomedical imaging.
arXiv Detail & Related papers (2023-11-01T17:42:56Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - High harmonic generation driven by quantum light [0.0]
High harmonic generation (HHG) is an extreme nonlinear process where intense pulses of light drive matter to emit high harmonics of the driving frequency.
We show that the defining spectral characteristics of HG, such as the plateau and cutoff, are sensitive to the photon statistics of the driving light.
We develop the theory of extreme nonlinear optics driven by squeezed light, and more generally by arbitrary quantum states of light.
arXiv Detail & Related papers (2022-11-06T17:44:30Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - On using classical light in Quantum Optical Coherence Tomography [0.0]
Quantum Optical Coherence Tomography provides an increased axial resolution and is immune to even orders of dispersion.
In this work, we investigate the use of this spectral approach in which quantum interference is obtained with classical low-intensity light pulses.
arXiv Detail & Related papers (2021-03-27T18:58:59Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Quantum-inspired terahertz spectroscopy with visible photons [0.0]
Terahertz spectroscopy allows for identifying different isomers of materials, for drug discrimination and for detecting hazardous substances.
Despite these useful applications, terahertz spectroscopy suffers from the still technically demanding detection of terahertz radiation.
Here, we report on the first demonstration of terahertz spectroscopy, in which the sample interacts with terahertz idler photons.
arXiv Detail & Related papers (2020-11-05T11:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.