論文の概要: How Effective are Generative Large Language Models in Performing Requirements Classification?
- arxiv url: http://arxiv.org/abs/2504.16768v1
- Date: Wed, 23 Apr 2025 14:41:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 15:45:42.872177
- Title: How Effective are Generative Large Language Models in Performing Requirements Classification?
- Title(参考訳): 要求分類における大規模言語モデルの有効性
- Authors: Waad Alhoshan, Alessio Ferrari, Liping Zhao,
- Abstract要約: 本研究では,2次および複数クラスの要件分類を行う3つの生成的大規模言語モデル(LLM)の有効性について検討した。
我々の研究は、素早い設計やLLMアーキテクチャといった要因は普遍的に重要であるが、データセットのバリエーションなどの要因は、分類作業の複雑さに応じて、より状況に影響を及ぼすと結論付けている。
- 参考スコア(独自算出の注目度): 4.429729688079712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
- Abstract(参考訳): 近年,変換器をベースとした大規模言語モデル (LLM) が自然言語処理 (NLP) に革命をもたらした。
要求工学(RE)もまた、トレースリンク検出や規制コンプライアンスなど、さまざまなタスクのためのLLMの実験が急増している。
要求分類はREの一般的なタスクである。
BERTのような非生成LDMはこのタスクにうまく適用されているが、生成LDMの探索は限られている。
このギャップは重要な疑問を提起する: コンテクスト対応の出力を生成するジェネレーションLLMは、要求分類において、どの程度うまく機能するのか?
そこで本研究では,LLMs-Bloom,Gemma,Llama-inの3つの生成的LLMの有効性について検討した。
広範に使われている3つのデータセット(PROMISE NFR、Functional-Quality、SecReq)にわたる400以上の実験を含む広範な実験を設計する。
我々の研究は、素早い設計やLLMアーキテクチャといった要因は普遍的に重要であるが、データセットのバリエーションなどの要因は、分類作業の複雑さによって、より状況的な影響を生んでいると結論付けている。
この洞察は、将来のモデル開発とデプロイメント戦略をガイドし、プロンプト構造を最適化し、モデルアーキテクチャをパフォーマンスを改善するためのタスク固有のニーズに合わせることに重点を置いています。
関連論文リスト
- Catastrophic Forgetting in LLMs: A Comparative Analysis Across Language Tasks [0.0]
大規模言語モデル(LLM)は、かなり高度な自然言語処理(NLP)を持つ
本研究では,主要なNLUタスクに対する各種オープンソースLLMの連続的な微調整について検討する。
以上の結果から,Phi-3.5-miniのようなモデルでは,強い学習能力を維持しつつ,最小限の忘れを生じさせることが示唆された。
論文 参考訳(メタデータ) (2025-04-01T23:06:55Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
LLM(Large Language Models)は、ICL(In-context Learning)機能によってNLPを変換した。
本稿では,予め定義されたタスクのラベル付き例から新しいタスクまで,LLMが一般化できるかどうかを検討する。
LLaMA-2 7Bは107%, LLaMA-2 13Bは18.6%, GPT3.5は3.2%であった。
論文 参考訳(メタデータ) (2024-05-17T05:20:49Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
パラメータ効率のよい微調整(PEFT)は、大規模言語モデル(LLM)をタスク固有のデータに効率的に専門化するための有望なアプローチである。
本研究は,PEFTと量子化を組み合わせることで,より大きなLCMをチューニングし,メモリ使用量を大幅に削減する可能性を明らかにする。
論文 参考訳(メタデータ) (2023-08-21T04:31:06Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。