論文の概要: A Simulation Environment for the Neuroevolution of Ant Colony Dynamics
- arxiv url: http://arxiv.org/abs/2406.13147v1
- Date: Wed, 19 Jun 2024 01:51:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:38:44.256050
- Title: A Simulation Environment for the Neuroevolution of Ant Colony Dynamics
- Title(参考訳): アントコロニーダイナミクスの神経進化シミュレーション環境
- Authors: Michael Crosscombe, Ilya Horiguchi, Norihiro Maruyama, Shigeto Dobata, Takashi Ikegami,
- Abstract要約: 創発的集団行動の研究を促進するためのシミュレーション環境を導入する。
現実世界のデータを活用することで、環境はターゲットのアリの跡をシミュレートし、制御可能なエージェントが複製を学ばなければならない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a simulation environment to facilitate research into emergent collective behaviour, with a focus on replicating the dynamics of ant colonies. By leveraging real-world data, the environment simulates a target ant trail that a controllable agent must learn to replicate, using sensory data observed by the target ant. This work aims to contribute to the neuroevolution of models for collective behaviour, focusing on evolving neural architectures that encode domain-specific behaviours in the network topology. By evolving models that can be modified and studied in a controlled environment, we can uncover the necessary conditions required for collective behaviours to emerge. We hope this environment will be useful to those studying the role of interactions in emergent behaviour within collective systems.
- Abstract(参考訳): 我々は,アリコロニーの動態を複製することに着目し,創発的集団行動の研究を促進するためのシミュレーション環境を導入する。
現実のデータを活用することで、環境は、ターゲットアリが観測した感覚データを用いて、制御可能なエージェントが複製を学ばなければならないターゲットアリの跡をシミュレートする。
この研究は、ネットワークトポロジにおけるドメイン固有の振る舞いをエンコードする神経アーキテクチャの進化に焦点を当て、集合的行動のためのモデルの神経進化に寄与することを目的としている。
制御された環境で修正および研究できるモデルを進化させることで、集団行動の出現に必要な条件を明らかにすることができる。
この環境が、集団システムにおける創発的行動における相互作用の役割を研究する人々にとって有用であることを願っている。
関連論文リスト
- Navigating the swarm: Deep neural networks command emergent behaviours [2.7059353835118602]
エージェント間相互作用ルールを微調整することにより,グローバルなパターンを意図した集合行動の協調構造を生成することができることを示す。
私たちの戦略では、望ましい構造を指示する相互作用ルールを見つけるために、ダイナミックスの法則に従うディープニューラルネットワークを採用しています。
本研究は, ロボット群操作, アクティブ物質組織, 生体システムにおける不明瞭な相互作用規則の解明における新たな応用の道を開くものである。
論文 参考訳(メタデータ) (2024-07-16T02:46:11Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Contrastive-Signal-Dependent Plasticity: Forward-Forward Learning of
Spiking Neural Systems [73.18020682258606]
我々は、ニューロンの個々の層が並列に機能する、スパイキングニューロンユニットからなる神経模倣アーキテクチャを開発する。
コントラスト信号依存塑性(CSDP)と呼ばれるイベントベース前方学習の一般化を提案する。
いくつかのパターンデータセットに対する実験結果から,CSDPプロセスは分類と再構成の両方が可能な動的再帰スパイクネットワークのトレーニングに有効であることが示された。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Co-Imitation: Learning Design and Behaviour by Imitation [10.40773958250192]
ロボットの協調適応は、与えられたタスクに対してシステムの身体と行動の両方を適応させることを目的としている。
本稿では,コ・イミテーション(co-imitation)と呼ばれるコ・アダプテーション問題に対する新たな視点を紹介する。
本稿では,実証者の状態分布を一致させることにより,行動と形態を適応させるコミュニテーション手法を提案する。
論文 参考訳(メタデータ) (2022-09-02T17:57:32Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
我々は、AI(Artificial General Intelligence, AGI)の検索は、人間レベルの知能よりもはるかに低いレベルから始まるべきだと論じる。
我々の仮説は、エージェントが環境の中で行動するとき、学習は感覚フィードバックによって起こるというものである。
環境反応から学習する生物学的にインスパイアされた人工ニューラルネットワークを進化させる手法を評価する。
論文 参考訳(メタデータ) (2022-07-27T15:30:50Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
本稿では,出力確率,時間的予測,モジュール型人工ニューラルネットワークアーキテクチャを提案する。
我々のアーキテクチャは、割当マップと解釈できる潜在状態が発達していることを示す。
アクティブな推論と組み合わせることで、フレキシブルでゴール指向の動作が実行可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T14:13:04Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - Ecological Reinforcement Learning [76.9893572776141]
このような条件下での学習を容易にする環境特性について検討する。
環境の特性が強化学習エージェントのパフォーマンスにどのように影響するかを理解することは、学習を魅力的にする方法でタスクを構造化するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-22T17:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。