Analyzing Diversity in Healthcare LLM Research: A Scientometric Perspective
- URL: http://arxiv.org/abs/2406.13152v2
- Date: Mon, 2 Sep 2024 15:42:03 GMT
- Title: Analyzing Diversity in Healthcare LLM Research: A Scientometric Perspective
- Authors: David Restrepo, Chenwei Wu, Constanza Vásquez-Venegas, João Matos, Jack Gallifant, Leo Anthony Celi, Danielle S. Bitterman, Luis Filipe Nakayama,
- Abstract summary: This paper presents a comprehensive scientometric analysis of large language models (LLMs) research for healthcare.
Our findings highlight significant gender and geographic disparities, with a predominance of male authors.
We propose actionable strategies to enhance diversity and inclusivity in artificial intelligence research.
- Score: 3.724351094182122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of large language models (LLMs) in healthcare has demonstrated substantial potential for enhancing clinical decision-making, administrative efficiency, and patient outcomes. However, the underrepresentation of diverse groups in the development and application of these models can perpetuate biases, leading to inequitable healthcare delivery. This paper presents a comprehensive scientometric analysis of LLM research for healthcare, including data from January 1, 2021, to July 1, 2024. By analyzing metadata from PubMed and Dimensions, including author affiliations, countries, and funding sources, we assess the diversity of contributors to LLM research. Our findings highlight significant gender and geographic disparities, with a predominance of male authors and contributions primarily from high-income countries (HICs). We introduce a novel journal diversity index based on Gini diversity to measure the inclusiveness of scientific publications. Our results underscore the necessity for greater representation in order to ensure the equitable application of LLMs in healthcare. We propose actionable strategies to enhance diversity and inclusivity in artificial intelligence research, with the ultimate goal of fostering a more inclusive and equitable future in healthcare innovation.
Related papers
- Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Mitigating the Risk of Health Inequity Exacerbated by Large Language Models [5.02540629164568]
We show that incorporating non decisive sociodemographic factors into the input of large language models can lead to incorrect and harmful outputs.
We introduce EquityGuard, a novel framework designed to detect and mitigate the risk of health inequities in LLM based medical applications.
arXiv Detail & Related papers (2024-10-07T16:40:21Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [11.196196955468992]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.
We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - Mapping the Increasing Use of LLMs in Scientific Papers [99.67983375899719]
We conduct the first systematic, large-scale analysis across 950,965 papers published between January 2020 and February 2024 on the arXiv, bioRxiv, and Nature portfolio journals.
Our findings reveal a steady increase in LLM usage, with the largest and fastest growth observed in Computer Science papers.
arXiv Detail & Related papers (2024-04-01T17:45:15Z) - Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis [24.532570258954898]
Large Language Models (LLMs) have rapidly become important tools in Biomedical and Health Informatics (BHI)
This study aims to provide a comprehensive overview of LLM applications in BHI, highlighting their transformative potential and addressing the associated ethical and practical challenges.
arXiv Detail & Related papers (2024-03-24T21:29:39Z) - A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models [20.11590976578911]
Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities.
Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity.
We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions.
arXiv Detail & Related papers (2024-03-18T17:56:37Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.